Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Асинхронные К. п. д. — Зависимость от момента

Будем рассматривать привод с асинхронным фазовым двигателем и реостатным пуском, имеющим в пределах одной ступени сопротивлений линейную зависимость момента от скорости  [c.55]

Фиг. 7. Зависимость момента вращения асинхронного двигателя от Фиг. 7. Зависимость момента вращения асинхронного двигателя от

Рис. 404. Механические характеристики асинхронного электродвигателя трехфазного тока в виде зависимости момента ротора от угловой скорости и в виде зависимости мощности от угловой скорости. Рис. 404. Механические <a href="/info/673832">характеристики асинхронного электродвигателя трехфазного тока</a> в виде зависимости момента ротора от <a href="/info/2005">угловой скорости</a> и в виде зависимости мощности от угловой скорости.
Момент асинхронного двигателя в зависимости от скольжения представлен на рис. 78 при трех значениях напряжения U- , (кривая /), (кривая 2) я и3 (кривая 5), причем Ui> Ug, а зависимость момента сопротивления движению вентилятора от частоты вращения изображена кривой 4. При напряжении Ui пусковой момент двигателя Мщ больше момента вентилятора при трогании Мпъ- Следовательно, пуск произойдет, и система двигатель-вентилятор будет ускоряться, пока моменты двигателя и вентилятора не уравняются в точке с координатами М , щ (sj). При напряжении пуск также произойдет (Мп2,> Мп , НО моменты уравняются при скольжении Sg, соответствующем малой частоте вращения Если напряжение снизится до значения 0 при работающем двигателе, его скольжение возрастет до значения Sj, а частота вращения соответственно снизится до значения Токи статора и ротора в этом режиме в несколько раз превышают номинальные значения. При напряжении и3 пуск не произойдет, так как М з < Мцв. а после снижения напряжения до этого значения при работающем двигателе произойдет его опрокидывание, т.е. двигатель остановится, и значения токов статора и ротора будут соответствовать режиму короткого замыкания. При напряжениях, близких к U , работа двигателя будет нестабильной, так как при небольших изменениях напряжения частота вращения будет изменяться от нуля до значения, близкого к п .  [c.90]

Работу асинхронного двигателя можно представить в виде механической характеристики, где показана зависимость момента М электродвигателя от скорости вращения п при изменении нагрузки на его валу.  [c.13]

Однофазный асинхронный мотор. В качестве второго примера рассмотрим задачу о вращении ротора однофазного асинхронного мотора. Некоторые недостатки этого типа моторов (в чем заключаются эти недостатки — выяснится при нашем рассмотрении) делают его мало пригодным для работы в обычных условиях, и поэтому асинхронные однофазные моторы изготовляются только очень небольших мощностей и используются только в тех случаях, когда при трогании с места и малых оборотах мотора нагрузка на него мала. Этими условиями определяется область применения однофазных асинхронных моторов — ими пользуются, например, для вращения небольших вентиляторов. При питании статора мотора однофазным переменным током получается зависимость вращающего момента от числа оборотов, примерно указанная на рис. 184. С другой стороны, вращению ротора препятствует трение (в подшипниках) и сопротивление воздуха (движению вентилятора) учитывая как первое ( твердое ), так и второе ( жидкое ) трение, мы можем зависимость момента сил трения от скорости изобразить примерно так, как это указано на рис. 185,  [c.261]


Характеристики сил, зависящих от скорости. На рис. 4.1 показана механическая характеристика асинхронного электродвигателя — зависимость движущего момента от угловой скорости ротора машины. Рабочей частью характеристики является участок аЬ, на котором движущий момент резко уменьшается даже при незначительном увеличении скорости вращения.  [c.141]

Принимая зависимость для момента движущей силы но этому условию, запишем уравнение движения механиз.ма с асинхронным двигателем в виде зависимости (22.9)  [c.288]

Для привода технологических машин обычно применяют асинхронные электродвигатели, у которых угловая скорость ротора меняется в зависимости от нагрузки. Механическая характеристика Л4д(со) такого двигателя (см. рис. 11.7) сложнее, чем у других типов двигателей. При расчете маховика в этом случае учитывают минимальную величину (о ин1 которая не должна быть меньше значения, соответствующего опрокидывающему моменту двигателя Л4 акс- Приведенный момент М1 сил сопротивления может являться функцией угла поворота ф или времени t.  [c.383]

По ЭТИМ данным строят упрощенную характеристику асинхронного двигателя, где рабочий участок представлен отрезком наклонной прямой (рис. 12.6). Согласно такому виду характеристики, момент двигателя можно представить аналитической зависимостью (уравнение прямой, проходящей через две известные точки)  [c.385]

Можно, однако, представить и тот возможный случай, когда за счет изменения закона нагружения рабочей машины соотношение между моментами Мд, М и М движущих сил, сил сопротивлений и массовых сил радикально меняется и влечет за собой изменение числа ветвей Г=т . (ф) инерциальной кривой, нарушая ее топологическую структуру. Так, например, инерциальная кривая машинного агрегата с коротко замкнутым асинхронным двигателем, характеристика которого имеет провал при малых скоростях, в зависимости от закона нагружения рабочей машины  [c.251]

Отметим, что уравнения электромагнитных переходных процессов в двигателях переменного тока (асинхронных или синхронных) являются существенно нелинейными в силу того, что электромагнитный вращающий момент выражается в виде векторного произведения потокосцепления и тока. Кроме того, у асинхронного двигателя взаимоиндуктивности между статорными и роторными обмотками являются функциями угла 0 между магнитными осями фаз статора и ротора. Угловая скорость ротора 0D, являющаяся функцией времени t (независимого переменного), связана дифференциальной зависимостью с углом 0. Поэтому уравнения, в которых потокосцепления выражаются через токи, являются также нелинейными [61], [105].  [c.18]

Дифференциальное уравнение, характеризующее зависимость электромагнитного вращающего момента асинхронного двигателя от угловой скорости ротора, имеет вид  [c.23]

Аналитическое выражение зависимости между моментом и угловой скоростью ротора для двигателей многих типов весьма громоздко. Кроме того, как показывает ряд исследований, при питании мощных электродвигателей машин от маломощной участковой сети механическая характеристика двигателя может значительно отличаться от номинальной в связи с падением напряжения. Ввиду этого при расчетах имеет смысл пользоваться упрощенной зависимостью, определенной по построенной опытным путем действительной механической характеристике двигателя в условиях эксплуатации. При этом для наиболее распространенных асинхронных электродвигателей удобно принять допущение, что в пределах первого участка характеристики, т. е. во время, за которое крутящий момент двигателя возрастает от номинальной до максимальной величины, угловое замедление его ротора изменяется по линейному закону. Вносимая таким допущением погрешность может быть определена путем сопоставления зависимости (<р), полученной на базе принятого допущения, с исходной механической характеристикой двигателя.  [c.388]

На рис. 1. 3 показана характеристика асинхронного двигателя. При работе двигателя на верхней устойчивой ветви характеристики от 5 = о до 5 = и при изменении момента сопротивления от нуля до М, ах вне зависимости от продолжительности действия каждого значения указанного момента двигатель будет сохранять способность автоматически развивать движущий момент в соответствии с моментом сопротивления. Когда же момент сопротивления Мд достигнет значения Мо, т. е. превысит Мтах, то двигатель опрокинется и рабочая точка характеристики, перейдя на неустойчивую ветвь, может дойти до положения с1, соответствующего нулевой угловой скорости. Однако, если увеличенное значение момента сопротивления Мо будет действовать кратковременно, то остановки двигателя не произойдет, так как процесс опрокидывания двигателя, связанный с изменением скорости движущихся масс, требует определенного времени.  [c.419]


Как указано выше, механические характеристики двигателей задаются в виде функции одного параметра, а именно угловой скорости его ротора, но в общем случае движущие силы подчиняются более сложным законам. Например, механическая характеристика электродвигателя представляет собой зависимость развиваемого им момента от угловой скорости ротора. Такой зависимостью можно пользоваться только для определения угловой скорости ротора двигателя, преодолевающего постоянную нагрузку. Если же угловая скорость ротора изменяется, то изменяется и сила тока двигателя, а вместе с током происходит изменение и развиваемого двигателем момента. Таким образом, развиваемый электродвигателем момент зависит не только от угловой скорости, но и от углового ускорения его ротора. Влияние углового ускорения ротора на развиваемый им момент оказывается более существенным для электродвигателей постоянного тока, чем для асинхронных двигателей. Влияние углового ускорения ротора на развиваемый им момент получается более заметным при быстро протекающих переходных процессах, когда происходит резкое изменение нагрузки двигателя. Во многих случаях практики влиянием углового ускорения на изменение момента двигателя можно пренебрегать.  [c.23]

Вид механической характеристики, которая определяет степень зависимости скорости от нагрузки (момента) на валу двигателя. Двигатели параллельного возбуждения постоянного тока и асинхронные электродвигатели переменного тока обладают жесткими естественными характеристиками. Их скорость мало зависит от нагрузки. Такая характеристика целесообразна для очень многих производственных механизмов насосов, вентиляторов, большинства станков, конвейеров, механизмов передвижения кранов и т. д.  [c.431]

Фиг. 8. Зависимость к. п. д. и os у асинхронного двигателя от момента вращения. Фиг. 8. Зависимость к. п. д. и os у <a href="/info/31737">асинхронного двигателя</a> от момента вращения.
Фиг. 19. Зависимость скорости вращения от момента на валу конденсаторного асинхронного двигателя (механическая характеристика). Фиг. 19. Зависимость <a href="/info/108847">скорости вращения</a> от момента на валу <a href="/info/86396">конденсаторного асинхронного двигателя</a> (механическая характеристика).
Прямой пуск короткозамкнутых двигателей. Коротко-замкнутые асинхронные двигатели обычно пускаются непосредственно от сети на полное напряжение. Начальный пусковой момент М и начальный пусковой ток 1 короткозамкнутых двигателей при пуске под полным напряжением колеблются в зависимости от синхронной скорости вращения, мощности и формы исполнения ротора.  [c.508]

Асинхронные двигатели с фазным ротором (кривая 2 на рис. 109,6) имеют несколько большую массу, габариты и стоимость, зато потери энергии в обмотках при переходных процессах меньше, чем у двигателей с короткозамкнутым ротором. Поэтому их рационально применять при более напряженном режиме работы. Для этих двигателей применяют регулирование скорости путем изменения сопротивления (резисторов) включаемого в цепь ротора. В зависимости от значения сопротивления разгон двигателя осуществляется по одной из искусственных характеристик, представленных на рис. 110, поясняющем процесс разгона механизма. В начальный момент сила тока ограничена максимальным сопротивлением. Характеристика 1 двигателя наиболее крутая. Разгон двигателя происходит по линии а. . .б, где частота вращения его возрастает от нуля до щ. После это-, го сопротивление уменьшают и двигатель переходит на другую характеристику 2, по которой его разгоняют до частоты вращения П2- Затем снова сопротивление уменьшают, сила тока  [c.286]

Если фактическая продолжительность включения соответствует одному из перечисленных режимов нагрева и если момент сопротивления остается неизменным, то по каталогу выбирают двигатель при заданном значении ПВ с номинальной мощностью не ниже расчетной. Если фактическое значение ПВф не равно номинальному значению, то ближайшее к требуемой мощности Рф значение номинальной мощности Рном ДЛя асинхронных двигателей и двигателей с параллельным возбуждением находят по зависимости  [c.293]

Дальнейший рост частоты вращения ротора значительно замедляется, и его можно аппроксимировать логарифмической зависимостью частоты от времени. Так как рост частоты вращения ротора замедляется, то возрастает вероятность взаимодействия силового агрегата с внешними вибрационными полями. Следствием этого взаимодействия является синхронизация частоты вращения ротора внешним вибрационным полем. Для преодоления возникшего потенциального барьера необходимы дополнительные затраты энергии от питающих сетей. В работе [48] показано, что время переходного процесса при пуске мощных асинхронных двигателей пропорционально моменту инерции ротора и установившемуся коэффициенту скольжения  [c.121]


Отношение максимального крутящего момента к номинальному у двигателей серии МТ находится в пределах 2,5—3. поэтому двигатели могут надежно работать при некоторых колебаниях напряжения сети. Начальный пусковой момент двигателей МТК в 2,6—3,2 раза выше номинального. Асинхронный двигатель имеет достаточно жесткую характеристику — незначительно изменяет частоту вращения при изменении нагрузки. В пределах нормальной нагрузки и допустимых перегрузок между током двигателя и нагрузкой на валу существует следующая пропорциональная зависимость с увеличением нагрузки двигатель потребляет из сети больший ток и большую мощность. При работе вхолостую асинхронный двигатель потребляет из сети намагничивающий ток, необходимый для создания вращающегося магнитного поля. Намагничивающий ток у крановых двигателей переменного тока достигает 60—70% но.минального тока при ПВ 25%.  [c.126]

Отношение максимального крутящегося момента к номинальному у двигателей серии МТ находится в пределах 2,5—3, поэтому они могут надежно работать при некоторых колебаниях напряжения сети. Начальный пусковой момент двигателей серии МТК в 2,6—3,2 раза выше номинального. Асинхронный двигатель имеет достаточно жесткую характеристику — мало изменяет частоту вращения при изменении нагрузки. В пределах нормальной нагрузки и допустимых перегрузок между током двигателя и нагрузкой на валу существует пропорциональная зависимость с увеличением нагрузки двигатель потребляет из сети больший ток и большую мощность. При работе вхолостую асинхронный двига-34  [c.34]

У всех электродвигателей, кроме синхронных, момент зависит от скорости вращения ротора. Зависимость Мд (Лд) называется статической механической характеристикой двигателя. На рис. 8.13 изображен примерный вид зависимости Мд (о>д) для наиболее распространенного трехфазного асинхронного двигателя с коротко-замкнутым ротором А и для двигателя постоянного тока с параллельным возбуждением Ш.  [c.273]

Для q можно брать значения от 1,5 до 6- -7. При жесткой характеристике электродвигателя и малом д необходимый момент инерции маховика оказывается непомерно большим. В таких случаях можно, не меняя д, взять двигатель с более мягкой характеристикой, например трехфазный асинхронный электродвигатель с повышенным скольжением серии АОС 2. Вообще, в отношении коэффициента д один и тот же электродвигатель обладает разной жесткостью при постоянной крутизне характеристики в зависимости от того, насколько его номинальная (каталожная) мощность отличается от номинальной мощности N проектируемой машины.  [c.276]

Различают естественные и искусственные механические характеристики электродвигателей. Естественной механической характеристикой называется зависимость оборотов двигателя от момента на валу при номинальных условиях работы двигателя в отношении его параметров (номинальные напряжение, частота, сопротивление и т. п.). Изменение одного или нескольких параметров вызывает соответствующее изменение механической характеристики двигателя. Такая механическая характеристика называется искусственной. На рис. 89 показаны искусственные механические характеристики асинхронного двигателя с фазным ротором при изменении частоты тока (рис. 89, б), величины напряжения питающей сети (рис. 89, в) и при изменении сопротивления цепи ротора (рис. 89, г).  [c.377]

Введение дополнительных (пусковых) резисторов изменяет механическую характеристику асинхронного двигателя. На рис. 60 показаны механические характеристики двигателя при различных сопротивлениях резисторов, введенных в цепь ротора. Характеристика ЗУ показывает зависимость движущего момента М двигателя от частоты  [c.101]

Плавная посадка конструкции на место установки требует значительного снижения скорости ее опускания. У большинства кранов подъем и опускание груза осуществляется механизмом, представляющим собой обычную электрореверсивную лебедку с приводом от асинхронного кранового двигателя. Механические характеристики таких двигателей (зависимость частоты вращения от развиваемого момента п — f (М)) не позволяют получить малых скоростей посадки груза, так как изменение веса груза резко изменяет скорость опускания. Поэтому в механизмах подъема современных башенных кранов применяются специальные схемы управления электрооборудованием, дающие возможность изменить механическую характеристику привода и получить устойчивые низкие посадочные скорости при любых колебаниях нагрузки.  [c.130]

Однако существуют машины, в которых влияние скорости на силы и моменты ныражено очень резко. К ним относятся, например, асинхронные и шунтовые двигатели, получившие наиболее широкое распространение в промышленном электроприводе. Механические характеристики этих машин — в их рабочей части — представляют собой практически прямую линию, расположенную почти вертикально (например, рис. 4.1, 4.5, б). Это значит, что даже небольшие колебания угловой скорости вызывают заметные изменения движущего момента. Поэтому следует ожидать, что резко выраженная зависимость момента от скорости должна оказать свое влияние на результаты динамического анализа и синтеза.  [c.173]

Более сложной является характеристика асинхронного двигателя трехс зазного тока (рис. 42, в), которая имеет зосхездящую и нисходящую части. Областью устойчивой работы двигателя при такой характеристике является ее нисходящая часть. Если момент сопротивления становится больше максимального момента движущих сил, называемого опрокидываюш,им моментом, то двигатель останавливается (опрокидывается). Аналогичную характеристику имеет двигатель внутреннего сгорания (имеется в виду зависимость среднего за цикл момента на коленчатом валу от угловой скорости этого вала).  [c.57]

Примеры разработки алгоритмов будут даны в последующих разделах пособия, здесь же проиллюстрируем основные моменты построения алгоритма на примере определения рабочих характеристик асинхронного электродвигателя, т.е. зависимостей потребляемой мощности Pi и тока 1, КПД, коэффициента мощности osip и момента двигателя Л/д от скольжения s. Необходимо также определить номинальное скольжение Show и время разгона Гр.  [c.56]

При исследовании переходных режимов в электромеханических системах с асинхронным двигателем, в отличие от систем с двигателями постоянного тока, можно пренеб )ечь электромагнитными переходными процессами и пользоваться всегда статической характеристикой двигателя, которую удобно представигь в виде зависимости движущего момента на валу ротора tjp величии ,F скольжения s (рис. 8i,a). Аналитическое г.Ы1)а>ксние этой характеристики обычно выражается (1)ормулой  [c.289]

По своему влиянию на внешнюю сеть перевозбуждённый синхронный двигатель аналогичен конденсатору и может компенсировать в сети действиеиндуктив-ности от трансформаторов и асинхронных двигателей и по этой причине называется синхронным компенсатором. На фиг. 57 изображены так называемые и - образные кривые синхронного двигателя, представляющие зависимость тока статора / и os <р от тока возбуждения при постоянном вращающем моменте. Слева от точки А ток и os 9 будут отстающими, справа— упреждающими.  [c.536]

Асбоцемент — Коэффициент линейного расширения 17 Асинхронные двигатели — Созф — Зависимость от момента вращения 484  [c.702]


Формирователь УФ выдает импульсный сигнал при прохождении сигнала дисбаланса через нулевое значение с плюсовой величины к минусовой. Этот импульсный сигнал управляет моментом работы исполнительного устройства или строболампы — при визуальном определении места дисбаланса. В ряде случаев он также используется в качестве сигнала скорости вращения детали. Вращение балансируемой детали осуществляется, в зависимости от типа изделия, с помощью ременной пере.тачп от двигателя постоянного тока, развернутого асинхронного статора или собственного привода.  [c.441]

На рис. 17.5, А в качестве примера показаны безразмерные характеристики двух гидромуфт, причем зависимость ц = /(/) у них одна и та же, а зависимости X =f(i) — разные (A-i и Я.ц). Первая муфта имеет существенно переменный коэффициент момента во всем диапазоне передаточных отношений /. Максимальное значение коэффициента момента >.imax (следовательно, и М х) У этой муфты при нулевом значении /. Такие гидромуфты используются при работе с двигателями внутреннего сгорания. Вторая муфта имеет гораздо меньшее изменение коэффициента момента Я,ц в широком диапазоне изменения передаточного отношения /, но при I 1 его значение резко падает. Коэффициент момента Х.ц (следовательно, и М) у этой гидромуфты достигает максимума iimax при / 0. Такие гидромуфты в большинстве случаев используются при работе с асинхронными электродвигателями.  [c.249]

Ограничение ускорений при разгоне и замедлении электропривода осуществляется лищь за счет естественного вида механических характеристик асинхронного двигателя. Ускорения определяются моментом сопротивления на валу двигателя и суммарным моментом инерции электропривода, которые изменяются в некоторых пределах в зависимости от загрузки кабины лифта.  [c.14]

Ограничение ускорений при разгоне и замедлении электропривода осуществляется лищь за счет естественного вида механических характеристик асинхронного двигателя. Ускорения определяются моментом сопротивления на валу двигателя и суммарным моментом инерции электропривода, которые изменяются в некоторых пределах в зависимости от загрузки кабины лифта. Управление двигателем Ml подъемной лебедки осуществляется с помощью контакторов направления КМ1, КМ2 и контакторов больщой и малой скорости КМЗ, КЫ4. Катущка тормоза YB питается от сети переменного тока через однополупериодный выпрямитель и включается с помощью контакта реле движения КАЗ.  [c.16]

ГГреимущественно используются трехфазные асинхронные электродвигатели с короткозамкнутым ротором. При этом, в зависимости от требуемых условий пуска, применяются двигатели с беличьей клеткой, глубоконазные или с двойной беличьей клеткой, т. е. с двумя короткозамкнутыми обмотками на роторе. Электродвигатели последних типов имеют значительно больший пусковой (начальный) момент и меньший пусковой ток. Асинхронные двигатели с двойной беличьей клеткой служат для привода механизмов с тяжелыми условиями пуска. При особо тяжелых пусковых условиях, т. е. при большом начальном статическом моменте, в некоторых случаях используются также асинхронные электродвигатели с фазным ротором, в цепь которого включен пускорегулирующий реостат.  [c.15]

Преимущественно применяются трехфазные асинхронные электродвигатели с короткозамкнутым ротором. При этом, в зависимости от требуемых условий пуска, применяются простые асинхронные двигатели или асинхронные двигатели с глубоким пазом, или же асинхронные двигатели с двойной беличьей клеткой, т. е. с двумя короткозамкнутыми обмотками на роторе. Электродвигатели nq-следних двух типов имеют значительно больший пусковой (начальный) момент и меньший пусковой ток, чем обычные асинхронные двигатели. Асинхронные двигатели с двойной беличьей клеткой применяются для привода механизмов с тяжелыми условиями пуска. При особо тяжелых пусковых условиях, т. е. при большом начальном статическом моменте, в некоторых случаях применяются также асинхронные электродвигатели с фазным ротором, в цепь которого включен пускорегулирующий реостат, что удорожает электропривод и усложняет его эксплуатацию.  [c.24]

Зависимость движущего момента от частоты вращения ротора для двигателей называется механической характеристикой. Механическая характеристика лифтового асинхронного двигателя с короткоза.мкну-тым ротором показана на рис. 56. Через М обозначен движущий момент двигателя, а через п-частота вращения ротора, 1/с.  [c.99]


Смотреть страницы где упоминается термин Асинхронные К. п. д. — Зависимость от момента : [c.212]    [c.172]    [c.23]    [c.408]    [c.142]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.0 ]



ПОИСК



Асинхронные двигатели — Cos<p— Зависимость от момента вращения

Асинхронные двигатели — Cos<p— Зависимость от момента вращения вращения

Асинхронные двигатели — Cos<p— Зависимость от момента вращения времени привода



© 2025 Mash-xxl.info Реклама на сайте