Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Импеллер

Для разгрузки от осевых усилий или защиты уплотнений от попадания твердых частиц применяют рабочие колеса с радиальным импеллером (рис. 7.19,г), представляющим собой радиальные лопасти с наружной стороны основного диска. Между торцами Лопастей 4 импеллера т корпусом выполняется зазор 0,5—1,0 мм.  [c.174]

Насос типа X (рис. 9.31) представляет собой горизонтальный, одноступенчатый, центробежный агрегат консольного типа. Конст рукция насоса аналогична насосам типа К. Отличительными особенностями являются наличие радиального закрытого импеллера на тыльной стороне рабочего колеса 2 применение двусторонних уплотнений 1, 3 для уравновешивания осевого усилия применение двойного торцевого уплотнения. В корпусе 4 установлен нормализованный комплект уплотнения 5, смонтированный на втулке вала 6 уплотнение закрывается крышкой 7 (в насосе могут быть использованы узлы других типов уплотнений) наличие специального отбойника 8 для предотвращения попадания жидкости в картер кронштейна.  [c.280]


В схему маслоснабжения включен специальный центробежный насос-импеллер 5, который предназначен для выдачи импульсов гидродинамическому регулятору скорости при изменении частоты вращения вала ТНД. Он установлен между ТНД и нагнетателем. Частота вращения импеллера такая же, как и вала ТНД. Импеллер забирает масло из трубопровода после маслоохладителя 7 под давлением 0,2—0,8 бар и нагнетает его в маслопровод перед холодильником. Для уменьшения расхода масла через импеллер в нагнетательном трубопроводе установлена дроссельная шайба 9. В случае выхода из строя маслоохладителя 11 vl насоса 13 смазка опорно-упорного подшипника может осуществляться из системы смазки низкого давления. Для этой цели обе системы соединены маслопроводом через обратный клапан 12.  [c.233]

Система предельной защиты состоит из масляного выключателя 14 (приводится Б действие бойковым автоматом безопасности 15 ТНД), масляного выключателя 17 (приводится в действие бойко-Бым автоматом безопасности 16 ТВД и 27 пусковой турбины), гидродинамического автомата безопасности 7 (приводится в действие от импульсов импеллера 8) и электромагнитного выключателя (приводится в действие от импульсов электрической системы управления и защиты агрегата). Срабатывание системы предельной защиты происходит следующим образом при повышении частоты вращения вала ТВД или ТНД выше расчетного бойки автоматов безопасности сжимают пружины и выступающей частью ударяют по рычагу масляного выключателя 14 или 17. Рычаг, отклоняясь в сторону, освобождает поршень масляного выключателя, который под действием пружин поднимается и соединяет систему предельной защиты со сливом. Как только давление масла в системе предельной защиты упадет, стопорный клапан Ь под воздействием пружины перекроет поступление топливного газа в камере сгорания и турбоагрегат остановится.  [c.238]

Дроссельный золотник 9 и гидравлический автомат безопасности 7 получают импульс от импеллера 8, который приводится, во вращение валом ТНД. Для более стабильной работы регулирования скорости подвод масла к импеллеру осуществляется из системы смазки подшипников турбины, осевого компрессора и редуктора после маслоохладителя 6.  [c.239]

Корпус и крышка подшипника силового ротора — стальные листы с горизонтальным разъемом у крышки имеется дополнительный вертикальный разъем. В нижней половине корпуса имеются фланцы, которыми подшипник монтируют на фундаментной раме. В корпусе подшипника устанавливают опорно-упорный вкладыш насос-импеллер масляный  [c.40]


ЗИНОЙ. Рабочие колеса землесосов, облицованные резиной (фиг. 63), имеют срок службы в 10 раз больший, чем такие же колеса без облицовки. Гуммированные статоры и импеллеры  [c.65]

Размещение в замкнутом объеме герметичных насосов подшипниковых опор, ротора, статорной перегородки и обмотки статора, являющихся источниками теплоты, а также присутствие в непосредственной близости от перекачиваемой среды конструкционных материалов, неработоспособных при высокой температуре, приводит к необходимости предусматривать в этих насосах эффективную систему теплоотвода. На рис. 4.2, а показана возможная схема охлаждения, циркуляция в которой обеспечивается насосом-пятой J0 или установленным на валу специальным импеллером.  [c.99]

Циркуляцию охлаждающей воды можно организовать и за счет напора собственного рабочего колеса ГЦН, исключив из конструкции насос-пяту (импеллер). В этом случае холодильник 7 должен быть рассчитан на съем тепла, поступающего с контурной водой и выделяющегося в электродвигателе.  [c.100]

Вал 3 насоса жестко соединен с ротором электродвигателя муфтой 7 и таким образом образована единая сборка, вращающаяся в трех подшипниках. Критическая частота вращения вала в 1,25—1,3 раза превышает фактическую частоту вращения. В качестве нижней направляющей опоры в насосе применен гидродинамический подшипник скольжения 4, смазываемый и охлаждаемый водой, циркуляция которой осуществляется по автономному контуру посредством специального вспомогательного импеллера. В электродвигателе расположены два подшипника качения с масляной смазкой, один из которых рассчитан на восприятие и осевой нагрузки, передаваемой от насоса через соединительную муфту с помощью кольцевых шпонок. Монтаж и демонтаж муфты осуществляются за счет предусмотренного в ней продольного разъема. В самой муфте между торцами валов предусмотрен зазор 370 мм, позволяющий проводить без демонтажа электродвигателя замену узла уплотнения и подшипника ГЦН.  [c.154]

На рис. 232 — 237 показаны конструкции уплотнений. В конструкции на рис. 232 отгон масла из уплотнения усилен установкой диска с лепестками, разведенными по винтовой линии, действующего наподобие осевого импеллера. В конструкции на рис. 236 отражательный диск снабжен кольцевой ребордой. Масло, поступающее в образованную ребордой кольцевую канавку, удаляется центробежной силой через ряд отверстий на периферии диска. На рис. 237 показана сдвоенная установка такого типа.  [c.104]

Гидродинамическая муфта представляет собой предельно возможное сближение двух лопаточных машин — центробежного насоса и турбины. Рабочее колесо первой — насосное колесо (импеллер) — закручивает поток, передавая ему момент. Рабочее колесо второй — турбинное колесо (репеллер) — раскручивает поток, принимая тем самым от него момент. Отсутствие неподвижных промежуточных лопаток не допускает преобразования момента, обеспечивая равенство = Основным достоинством такой системы является отсутствие непосредственного силового соприкосновения металлических деталей, заменяемого силовым замыканием через жидкость. Следствие—отсутствие износов рабочих органов.  [c.452]

Определение истинного дефекта должно производиться поочередным исключением возможных причин. Вначале определяется стабильность работы импеллера введением в работу ограничителя мощности. Его шток (рис. 31) упирается в сильфон следящей системы и тем самым снимает воздействие импульсного давления на работу регулятора скорости. Если при этом пульсация органов парораспределения прекратилась, то причина пульсаций кроется в неудовлетворительной работе импеллера, что может вызываться износом уплотнений или падением давления на всасе импеллера. Признаком износа уплотнений служит снижение давления на выдаче импульсного насоса. Эта причина пульсаций устраняется при ревизии насоса. Падение давления на всасе легко определяется по манометру. Поднять давление можно увеличением диаметра шайбы на линии питания бачка импеллера.  [c.82]

Для предупреждения качания нагрузки, связанного с пульсацией органов парораспределения, необходимо вести систематический тщательный контроль за системой регулирования. Постепенное падение давления на всасе импеллера свидетельствует о недостаточности подпитки, падение давления на напоре свидетельствует об износе уплотнений импеллера. Уменьшение давления в следящей камере регулятора скорости на работающей турбине более величины, МПа (кгс/см ), 0,5 Ро — (0,147—0,196) [0,6 Ро—(1.5—2)], где Ро — давление силовой воды, указывает на неплотность следящей системы. На установленной турбине давление в следящей камере регулятора скорости (под золотником) не должно быть меньше давления силовой воды более, чем на 0,196 МПа (2 кгс/см ).  [c.83]


Во время осмотра регулятора скорости следует обратить особое внимание на отсутствие задиров и рисок на золотнике и буксах, свидетельствующих о попадании в регулятор твердых механических частиц. Если такие дефекты имеются в зоне подвода силовой воды, то необходимо сделать ревизию фильтра регулятора скорости, не допуская увеличения зазора между пластинами фильтра более 0,15 мм. При наличии задиров в зоне подвода воды от напора импульсного насоса необходимо проверить чистоту бачка импеллера, а также всасывающих и напорных трубопроводов.  [c.88]

Используя результаты этих опытов, КТЗ создал оригинальную конструкцию упорно-опорного подшипника (рис. 336), в котором упорным диском служит откованный заодно с валом импеллер центробежного насоса, обслуживающего масляную систему турбины (смазку и регулирование).  [c.484]

Датчики скорости центробежный регулятор 1А или импеллер 1Б,  [c.90]

Рис. 5-7. Устройство для поддержания постоянного напора всасывания импеллера. Рис. 5-7. Устройство для поддержания постоянного напора всасывания импеллера.
Момент вступления регулятора давления — датчика гидродинамического регулятора—в работу и диапазон регулирования часто обеспечиваются изменением слива импульсного масла после импеллера.  [c.129]

Если давление уплотняемой жидкости превышает 1 МПа, перед сальником выполняют разгрузку в виде ци-линдричеокой дросселирующей щели 6 длиной /щ (рис. 7.22,в) или осевого импеллера 7 (рис. 7.21,г). Осевой импеллер представляет собой винтоканавочный или лабиринтный насос, расположенный в зоне уплотнения вала. 12 . 179  [c.179]

Открытие БЗК / производится путем подачи масла под давлением в полость над поршнем сервомотора 6. При необходимости БЗК может быть открыт также вручную с помощью маховика 7. БЗК одновременно служит регулирующим клапаном и поддерживает частоту вращения в пределах 103—108 % номинальной при периодическом оголении винта в штормовую погоду. Для этого сервомотор БЗК снабжен регулирующим золотником 5. Положение золотника зависит от давления импульсного масла (линия JII), поступающего от центробежного насоса — импеллера. Импеллер расположен на валу турбины, и создаваемое им давление пропорционально частоте ее вращения. При перемещении золотника силовое масло от главного масляного насоса (линия //) подается в В1фх-нюю полость сервомотора или частично сливается из нее по линии /V. В первом случае БЗК открывается в большей степени, во втором— частично прикрывается под действием пружины, что приводит к соответствующему изменению давления и расхода свежего пара.  [c.56]

Масло в — от насоса б — от импеллера в — проточное г на смазку д — постояи  [c.236]

Аналогичным образом срабатывают гидродинамический автомат безопасности 7 и электромагнитный выключатель 13. При повышении частоты вращения выше расчетного давление масла от импеллера возрастает. Под воздействием этого давления поршень гидродинамического автомата безопасности опускается и соединяет систему предельной защиты со сливом. При повышении давления на выходной линии нагнетателя выше расчетного элек-троконтактный манометр дает импульс на электромагнитный вы-  [c.238]

Индивидуальная система маслоснабжения (рис. 25) предназначена для смазки подшипников газоперекачивающего агрегата и создания герметичных уплотнений нагнетателя, а также для смазки систем гидравлического уплотнения и регулирования установки [11]. Масляная система состоит из маслобака, пускового 3 и резервного 4 масляных насосов, инжекторных насосов 5, 6. Подачу масла к деталям обеспечивает главный масляный насос /, во время пуска и остановки — пусковой масляный насос 3. Через сдвоенный обратный клапан 2 часть масла поступает к инжекторному насосу 5 для создания подпора во всасывающем патрубке главного масляного насоса и обеспечения его надежной работы, а часть масла — к инжекторному насосу 6 для подачи масла под давлением 0,02—0,08 МПа на смазку подшипников агрегата и зацепления редуктора. Масло после насосов подается в гидродинамическую систему регулирования агрегата, давление в которой поддерживает регулятор 9. Часть масла после регулятора, пройдя три маслоохладителя 10, подается на смазку ради ьно-упорного подшипника нагнетателя. При аварийном снижении давления в системе смазки установлены два резервных насоса 4 и 7 с электродвигателями постоянного тока. Причем насос 4 подключен к маслопроводу смазки турбин, компрессора и редуктора, а насос 7 — к линии смазки радиально-упорного подшипника. В системе маслоснабжения имеется специальный центробежный насос — импеллер 12, служащий для выдачи импульсов гидродинамическому регулятору скорости при изменении частоты вращения вала турбины низкого давления. Частота вращения импел-  [c.114]

Вал 12 насоса и ротор 4 электродвигателя соединены с помощью шлицевых полумуфт и торсионного вала 6. На нижнем конце ротора электродвигателя расположен маховик 5. Вал насоса вращается в двух подщипниках нижний — гидростатический, с питанием контурной водой от вспомогательного импеллера, верхний — радиально-осевой на масляной смазке. В верхней части осевого подшипника установлено храповое антиреверсивное устройство. Оно исключает вращение вала в обратную сторону, которое может возникнуть на неработающем насосе при неплотном закрытии обратного клапана на его нагнетании.  [c.151]

Стендовый натриевый насос с турбоприводом (рис. 5.31) интересен тем, что выполнен в консольном варианте на подшипниках качения. Вал насоса 5 вращается в двух опорах. Нижняя опора 6 — радиальный шарикоподшипник, верхняя опора -i — сдвоенный радиальный шарикоподшипник, воспринимающий осевую и радиальную нагрузки. Подшипники смазываются консистентной смазкой, закладываемой на весь срок работы насоса (возможно пополнение смазки с помощью шприц-масленки). Предусмотрено охлаждение подшипников дефи-нилом. В целях уменьшения протечек перекачиваемого натрия вал насоса проходит через узкую кольцевую щель 7 большой длины. Слив протечек натрия осуществляется по специальному трубопроводу. В конструкции предусмотрена дополнительная труба слива протечек на случай, если металл по каким-то причинам попадает выше диафрагмы 2. Импеллер 3 служит для затруднения условий попадания металла выше этой диафрагмы. Корпус насоса снабжен электрообогревом /. В качестве привода используется паровая турбина [I, гл. 2J.  [c.176]


Схема насоса с опорами вала, работающими на перекачиваемом теплоносителе, и механическим уплотнением вала с чистой запирающей водой представлена на рис. 8.11. Вертикальный вал направляется двумя радиальными дроссельными гидростатическими подшипниками 2 и 8. Нижний подшипник питается горячей водой с напора осевого рабочего колеса 1 при помощи винтового насоса 3 с многозаходными резьбовыми втулками, а слив из подшипника организован на всасывание рабочего колеса по каналам, выполненным в его ступице. Верхний радиальный ГСП питается охлажденной контурной водой от импеллера, выполненного заодно с пятой 7. В подшипниках применима пара трения сталь по стали. Осевая сила воспринимается двухсторонним гидростатическим осевым подшипником, работающим на охлажденном теплоносителе. Элементы, образующие пары трения, изготовлены из силицированного графита. Сегментные самоустанавли-вающиеся колодки снабжены ребрами качания и опираются на рессоры. Для снятия тепла, выделяющегося в осевом и верхнем радиальном ГСП, в корпусе насоса встроен трубчатый холодильник 6. Поток воды из пяты-импеллера сначала попадает на осевой подшипник, затем в верхний рад1 альный ГСП, после чего, проходя через трубчатый холодильник, охлаждается, поступает в зазор между валом и корпусом насоса, снимает тепло с вала и вновь попадает в пяту-импеллер. Такая система циркуляции позволяет поддерживать постоянной температуру (примерно 70°С) в полости пяты, предохраняя тем самым уплотнение вала от воздействия высокой температуры со стороны проточной части ГЦН. Между полостью пяты и проточной частью расположен тепловой барьер, представляющий собой каналы, засверленные в корпусе насоса. Через трубчатый холодильник 6 теплового барьера циркулирует вода промежуточного контура, имеющая на входе температуру примерно 45 °С. В верхней части ГЦН размещено уплотнение вала, представляющее собой блок из трех пар торцовых уплотнений, работающих на холодной запирающей воде. Первая ступень предотвращает протечки запирающей воды в контур с перепадом давления на нем около 2 МПа, вторая ступень предотвращает протечки в атмосферу и работает под полным давлением запирающей воды, а третья ступень является резервной и автоматически включается в работу в случае выхода из строя второй ступени уплотнения.  [c.280]

Принцип действия динамических уплотнений состоит в следующем. Вытекающая по уплотнительному зазору жидкость возвращается в уплотняемую полость радиальным или осевым импеллером. В качестве последнего используют рабочее колесо центробежного насоса (радиальный импеллер) или рабочие органы осевого, винтового, лабиринтно-винтового, двух- и трехвинтового насосов.  [c.239]

Подстройка степени неравномерности Проводится изменением жесткости пружины аналогично настройке центро бежного регулятора. Степень нечувствительности у гидродинамического регулятора бывает обычно или близкой к нулю, или очень большой (до 1—2%)- Последнее указывает на дефекты работы самого импульсного насоса — импеллера. Причина этого, прежде всего, скопление воздуха в корпусе цен-тробежно го импеллера. Воздух должен быть удален через специальное отверстие, закрытое 1пробкой (в импеллерах КТЗ воздух не скапливается). Другой причиной могут быть колебания уровня всасывания в импеллерах, не включенных дифференциально, как импеллер КТЗ. Постоянство уровня всасывания в системах с отсутствием подпора на всасывании импеллера 4 обеспечивается постоянным сливом 1 (рис. 5-7). Здесь постоянный уровень в камере 5, из которой всасывает масло импеллер 4, зав исит от поступления масла из. маслосистемы через отверстие 2 и слива масла на высоте установленного уровня через отверстия 1. Если поступление масла на слив 2 пе обеспечивает необходимой производительности, то уровень всасывания колеблется, что определяет нечувствительность импеллера. Колебания происходят и при вспенивании масла.  [c.129]


Смотреть страницы где упоминается термин Импеллер : [c.173]    [c.56]    [c.72]    [c.74]    [c.75]    [c.78]    [c.115]    [c.50]    [c.49]    [c.112]    [c.141]    [c.143]    [c.175]    [c.81]    [c.97]    [c.97]    [c.485]    [c.90]    [c.92]    [c.129]    [c.129]    [c.154]   
Смотреть главы в:

Регулирование газотурбинных агрегатов Изд.2  -> Импеллер



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте