Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициенты потерь на отражение света

ПРОСВЕТЛЕНИЕ ОПТИКИ, уменьшение отражения коэффициентов поверхностей оптич. деталей путём нанесения на них непоглощающих плёнок, толщина к-рых соизмерима с длиной волны оптич. излучения. Без просветляющих плёнок, даже при норм, падении лучей, потери на отражение света могут составлять до 10% от интенсивности падающего излучения. В оптич. системах с большим числом поверхностей (напр., в объек-  [c.590]


Фазовые пластинки (называемые также волновыми пластинками) и фазосдвигающие устройства выполняют роль преобразователей состояния поляризации. С помощью подходящей фазовой пластинки состояние поляризации светового пучка можно преобразовать в любое другое состояние поляризации. В формализме матриц Джонса предполагается, что отражение света от любой поверхности пластинки отсутствует и что свет полностью проходит через пластинку. Практически же любая пластинка всегда имеет конечный коэффициент отражения, несмотря на то что большинство фазовых пластинок имеют специальное покрытие, чтобы уменьшить потери на отражение от поверхностей. Френелевские отражения на поверхностях пластинки не только уменьшают интенсивность прошедшего излучения, но и влияют также на его тонкую спектральную структуру вследствие интерференции при многократном отражении (см. разд. 5.5). Опираясь на рис. 5.1, рассмотрим падающий пучок света, состояние поляризации которого описывается вектором Джонса  [c.133]

Вышеизложенные положения о пропускании, отражении и поглощении света на границе двух сред полностью применимы к светофильтрам. В дополнение следует заметить, что коэффициенты и учитывают только поглощение в среде. Если учесть потери на отражение от двух поверхностей светофильтра, то получим иные выражения для коэффициента пропускания и оптической плотности  [c.278]

Потери на отражение при преломлении могут быть рассчитаны по формулам Френеля [49]. Коэффициент пропускания Тр, учитывающий только потери на отражение, для неполяризованного света при установке в минимуме угла отклонения нескольких призм с одинаковыми углами А или при многократном прохождении через одну и ту же призму определяется выражением  [c.354]

Интерферометр Фабри—Перо. Интерферометр, или эталон Фабри—Перо, является в настоящее время основным прибором в спектроскопии высокой разрешающей силы. Его действие основано на интерференции большого числа лучей, получаемых при многократном отражении световой волны между двумя параллельно расположенными плоскими зеркалами, обладающими частичным пропусканием (рис. 26). В современных интерферометрах, как правило, используют многослойные диэлектрические зеркальные покрытия, которые наносят на подложки из оптического стекла или кварца в вакууме. Они позволяют получать высокие коэффициенты отражения света при малой величине потерь на поглощение. Худшие характеристики имеют покрытия из тонких пленок серебра и алюминия.  [c.76]


В оптических приборах с большим числом отражающих поверхностей (более 10) потери света из-за отражения могут достигать нескольких десятков процентов в обычном призменном бинокле потери света на отражение около 25%. С увеличением показателя преломления стекла (среды) коэффициент отражения света возрастает (табл. 17).  [c.460]

Потери вследствие отражений от торцевых поверхностей, определяются по формуле Френеля. Хотя принято считать отражение полным, иа самом деле часть энергии выходит через боковые стенки (примерно 10" —10" ). Поскольку этих отражений при больших апертурных углах бывает очень много, потеря света, вызванная этой причиной, может оказаться довольно значительной. Она плохо поддается вычислению, так как коэффициент отражения в сильной степени зависит от ряда причин, которые нельзя учесть (дефекты изготовления, грязь на поверхностях волокон и пр.)..  [c.571]

Зеркала и светоделительные пластинки для направления лазерных пучков света. Эти оптические элементы должны обладать высокой свето-термической прочностью, заданными значениями коэффициента отражения и пропускания и малыми потерями на рабочих длинах волн.  [c.127]

Второй фактор, которым определяются потери в резонаторе,— это пропускание зеркал. Для большинства лазеров имеются два предельных случая. Если зеркала полностью отражают свет, то лазер будет сильно генерировать, но не будет давать полезной выходной мощности (рассеянием на зеркалах и окнах пренебрегаем). Если же коэффициент отражения зеркал слишком мал, то потери при отражении превысят величину общего усиления и лазер не будет генерировать. Коэффициент отражения, при котором выходная мощность максимальна, лежит где-то посредине.  [c.306]

Реально потери света в световоде определяются поглощением, рассеянием в среде и потерями при отражении на торцах. Путем экспериментальных измерений показано, что энергетический коэффициент отражения R находится в интервале от  [c.75]

При использовании такой системы обозначений указанная поверхность раздела в рассматриваемом нами случае нормального падения имеет амплитудные коэффициенты отражения Я и пропускания где R = (п — 1)/(п +1) знаки + и у коэффициента отражения соответствуют случаям падения света на Н слева и справа (известно, что при отражении от оптически более плотной среды происходит, как говорят в оптике, потеря полуволны - фаза изменяется на тг).  [c.135]

Разрушающее действие солнечного света зависит от величины ультрафиолетовой составляющей и температуры, при которой происходит облучение. На примере испытаний меламиноалкидных эмалей авторы показали, что с увеличением температуры на каждые 10° С скорость фотохимической деструкции возрастает примерно в 1,1—1,5 раза. При температурах —10-т-+20° С потеря блеска меламиноалкидных эмалей имеет линейный характер. Однако при более низких температурах порядка —40- —60° С, которые характерны для высот 10—20 км, скорость изменения цвета (меление) будет протекать медленнее. Наличие значительного количества озона даже при низких температурах и коротковолновой радиации вызывает интенсивное старение лакокрасочного покрытия. Этот фактор играет важную роль, так как обшивка самолета, находящегося на аэродроме в безоблачную погоду летом, в зависимости от цвета эмали, которой он окрашен, и ее оптических свойств (коэффициент отражения и излучения) нагревается до 70° С (см. табл. 4). На больших высотах полета (10—15 км) солнечная радиация богата коротковолновой составляющей спектра, что обусловливает еще более интенсивное разрушение лакокрасочных покрытий. Следовательно, количество солнечной радиации, падающей на поверхность самолета, складывается из энергии, которую он получает, находясь на аэродроме, и энергии, которую он получает при высотном полете. Действительно, наиболее интенсивное разрушение лакокрасочного покрытия обычно наблюдается ка верхних поверхностях плоскостей и фюзеляжа, а также на боковых поверхностях вертикального оперения.  [c.26]

Пример 9. Согласование импедансов в оптике. Пучок видимого света, проходящий через пластинку стекла, отражается дважды на границах воздух — стекло и стекло — воздух. Интенсивность отраженного пучка будет пропорциональна квадрату амплитуды отраженной волны (или квадрату коэффициента отражения, если амплитуда падающей волны принята за единицу). Поэтому при каждом отражении в соответствии с уравнением (42) п. 5.3 потери интенсивности равны (1/5) =1/25=4%. Соответственно при переходе через пластинку (две поверхности) эти потери составят 8%. [Мы пренебрегаем интерференцией отраженных от двух поверхностей волн. Для обычного белого света интерференционные эффекты равны нулю при усреднении по широкому диапазону частот (цветов). Обратите внимание на опыт 5.10. Такие потери (8%) недопустимы в оптических приборах, имеющих много границ стекло — воздух. Поэтому обычно поверхность линз покрывают неотражающим слоем. В соответствии с уравнением (49) импеданс покрывающего слоя должен быть геометрическим средним импедансов стекла и воздуха, т. е. он должен быть равен J/"l,50- 1,0л 1,22. Толщина слоя должна равняться где Jia — длина волны света в слое. Для волны  [c.231]


Затронем еще два вопроса, имеющих отношение к многолучевой интерференции. Рассмотрим сначала много равноотстоящих параллельных отражающих плоскостей с малыми коэффициентами отражения (рис. 146). Почти весь свет, падающий на каждую плоскость, проходит через нее без потерь. В результате получится много параллельных Отраженных лучей 1, 2, 3,. .. почти одинаковой интенсивности. Разность хода между соседними лучами составляет 2d os ф, где d — расстояние между соседними плоскостями. Если выполнено условие  [c.251]

На рис. 2.9 показан спектр пропускания света монокристаллом ар-сенида галлия в области края поглош,ения. В области Л 910 нм поглош ение несуш ественно (а 1 см ), при этом коэффициент пропускания определяется величиной френелевых потерь на отражение света от двух поверхностей. Форма края поглош,ения кристалла СаАз будет обсуждаться в гл. 5.  [c.31]

Коэффициент пропусканпя призмы. Рассмотрим потери на отражение при прохождеппп пучка через призму. Выражение для пнтепспвпостп света, прошедшего через приз.му. легко найти, последовательно нри.меняя формулы (2.59) для компонент различной поляризации к обеим прело.мляющпм граням призмы (см. рис. 2.25, б).  [c.178]

Вне прямоугольника, соответствующего теории Эри, мы все еще можем применять принцип Гюйгенса. Основное предположение состоит в том, что законы геометрической оптики справедливы от фронта падающей волны А до фронта выходящей волны В (см. рис. 46). Это выражается, между прочим, в предположении о том, что потери на отражение при падении и при выходе луча одинаковы. Однако свет, достигающий В или его окрестностей, возникает на участке фронта А шириной порядка У2 ка. Пять изображенных лучей, с различными коэффициентами отражения и т, д., относительно независимы при у2Ка<. <0,08 а, что дает  [c.288]

Спектральные кривые коэффициента пропускаиия света. Пропускание света через оптическую среду зависит и от длины волны, и от толщины стекла. Оптическое стекло достаточно прозрачно в диапазоне длин волн от 300—400 до 2600—2700 нм. Стекло принято оценивать спектральными- кривыми коэффициента пропускания в слое толщиной 10 мм без учета потерь на отражение. На рис. 23, а показаны спектральные кривые коэффициента пропу-  [c.49]

На рис. 2.12 представлена исследованная зависимость Л и от угла падения ф. Там же приведены кривые для коэффициентов пропускания и , , которые (без учета потерь на поглощение) должны дополнять значения соответственно R ц и (Rx до единицы. Но естественный свет, падающий на границу раздела, представляет сумму двух не скоррелированных по фазе взаимно перпендикулярных волн ц и Е . Тогда для суммарной интенсивности отраженного света, измеренной без учета его поляризации, находим  [c.87]

Рассмотрение, проведенное выше, предполагает, что периодическая слоистая среда является полу бесконечной. Для локализованного распространения без потерь необходимо, чтобы коэффициент отражения на границе между волноводным слоем и периодической средой был равен единице, что возможно только в бесконечной структуре. На практике число периодов всегда конечное. Поэтому коэффициент отражения меньше единицы. Таким образом, в волноводе имеет место небольшая утечка энергии. Коэффициент затухания а можно грубо Оценить следующим образом. Пусть R — коэффициент отражения света, обусловленный брэгговским отражением на границе х = О 1). Если — угол падения луча в волноводном слое, то луч перемещается на расстояние 2/tg0 при каждом возвращении назад к той же границе. Таким образом, на участке длиной L число обратных возвращений равно N - L/(2tig д ). При этом коэффициент затухания дается выражением  [c.520]

Во многих практических схемах голографирования объекта достаточно средств для того, чтобы флуктуации, источником которых является первое и третье звено, сделать малыми по сравнению с флуктуациями, возникающими во втором, записывающем звене системы. Имеется достаточно богатый материал по флуктуациям детекторов светового излучения. Применительно к голографии этого материала оказывается недостаточно в связи с тем, что в нем отражается только анализ флуктуаций отклика на действие света по коэффициенту пропускания или отражения, а также так называемых темновых флуктуаций, имеющих место и при отсутствии света. В связи с тем, что при восстановлении волнового фронта весьма значительную роль играет постоянство разности фаз при прохождении или отражении восстанавливающей волны от голограммы, на потери информации существенно влияют флуктуации фазового сдвига, вызванные флуктуациями оптической длины пути света в записывающем материале. Последняя, в свою очередь, зависит от флуктуаций толщины материала и его показателя преломления при прохождении света через материал или от флуктуаций поверхностного рельефа при отражении восстанавливающей волны от поверхности голограммы. Следует отметить,  [c.72]

Выражения для kn получены при рассмотрении простых видов потерь. При учете более сложных видов потерь, таких как дифракция света на апертурах Элементов резонатора или потери за счет деполяризации света в элементах резонатора, приходится решать более сложные задачи для каждого конкретного случая отдельно. Выписать в общем случае добавки к Кц за счет подобных потерь не представляется возможным. Часто на практике подобными потерями на фоне рассмотренных выше можно пренебречь. Рассмотрим численные оценки потерь для Лаверов в режиме свободной генерации с йепрерывной и импульсной накачкой. Основным отличием в устройстве этих двух лазеров является коэффициент отражения выходного зеркала для непрерывных лазеров он достаточно большой (р2 0,9), для имоульсных заметно меньше (р2 0,5). Отличие обусловлено тем, что в импульсных лазерах средняя за импульс мощность накачки заметно выше, чем в непрерывных.  [c.54]

Порог генерации. Элементарный цикл работы лазера включает два последовательных прохождения через активную среду и соответствующие отражения от зеркал. Потери энергии могут быть учтены эффективными коэффициентами отражения р] и рг на зеркалах, причем они учитывают не только отражения от зеркал (вообще говоря, различные, поскольку через одно из них из лазера выходит излучение), но и другие потери, о которых говорилось выше. Таким образом, р1 и р2 меньше коэффициентов отражения только от зеркал резонатора. За один цикл происходят два отражения света и, следовательно, ослабление потока пропорцион ьно рфг-За один цикл свет в активной среде проходит путь 2Ь. Поэтому на основании (51.8) усиление потока за цикл пропорционально exp(a2L), где а — значение коэффициента усиления (51.2) за цикл. Полное усиление плотности потока энергии за один цикл описывается формулой  [c.312]


Для светоделительных покрытий указываются предельно возможные отношения коэффициента отражения р к коэффициенту пропускания т (при источнике света. 4), потери на поглощение и рассеяние в зависимости от отношения. Для светоделктельных интерференционных покрытий указывается предельно возлюжное значение коэффициента отражения Рд при угле падения луча 15°. Потери на поглощение и рассеяние в этих покрытиях практически равны нулю.  [c.557]

Действие пассивных затворов основано на способности материалов изменять свои оптические свойства под влиянием падающего на них света. Простейшие пассивные затворы представляют собой пленку из поглощающего материала, помещенную в резонатор лазера. В определенный момент пленка испаряется, открывая расположенное за ней зеркало. При этом потери в резонаторе лазера резко падают и происходит генерация гигантского импульса. Недостаток таких простейших модуляторов вытекает из необратимости происходящих процессов, в связи с чем чан1.е используются устройства на основе обратимых процессов насыщения поглощения, нелинейности коэффициента отражения, вынужденного рассеяния Мандельштама — Бриллюэна, самофокусировки.  [c.176]

Просветление оптических поверхностей. В этом случае явление интерференции в тонком слое используется для уменьшения коэффициента отражения от поверхностей оптических деталей— такой прием называют просветлением оптики . Так же как и ранее, рассмотрим вначале качественно явление, которое имеет место при однослойном просветлении. На поверхность диэлектрика с показателем преломления Яг (рис. 3.7.1) наносится такой слой, чтобы его показатель преломления ni был бы меньше Пг (П1СП2). В этом случае при нормальном падении скачок фазы на я (или потеря в разности хода половины длины волны) будет иметь место два раза при отражении от границы сред / и // и //—III. Если толщина пленки по-прежнему Х/4, то результирующая разность хода отраженных лучей будет Х/4 + Х/4-f Х/2-f Х/2 = X-f Х/2. Здесь два первых слагаемых соответствуют прохождению волной два раза слоя II, а вторые слагаемые соответствуют скачку фаз при отражениях света на границах раздела менее плотной и более плотной сред. В результате интерферирующие волны окажутся в противофазе и погасят друг друга. Коэффициент отражения R для рассматриваемой длины волн X станет равным нулю.  [c.192]

Наиболее распространенным многолучевым двухпластинчатым интерферометром является интерферометр (эталон) Фабри—Перр (ИФП). Изобретенный учеными Фабри и Перо в конце XIX столетия этот прибор не потерял своего значения и в настоящее время. Интерферометр Фабри—Перо представляет собой две стеклянные или кварцевые пластинки Pi и р2, разделенные воздушным промежутком d (рис. 17.1). Внутренние поверхности пластин имеют покрытия Si и Sa, обладающие высоким коэффициентом отражения. Многократные отражения луча, падающего на прибор, приводят к интерференции многих пучков, которые в проходящем и отраженном свете создадут интерференционную картину. В соответствии с рассмотрением, проведенным в 7, в проходящем свете в фокальной плоскости объектива будут наблюдаться узкие интерференционные максимумы и широкие минимумы. Картина в отраженном свете будет обратной.  [c.122]

В принципе световое и вообще электромагнитное поле содержит все возможные длины волн, направления распространения и на правления поляризации. Но главное назначение лазера как прибора состоит в генерации света с определенными характеристиками. Первый этап селекции, а именно по частоте, достигается выбором лазерного материала. Частота V испускаемого света определяется формулой Бора Ну = и нач — конечн и фиксируется выбором уровней энергии активной среды. Разумеется, линии оптических переходов не являются резкими, а по различным причинам уширены. Причиной уширения могут быть конечные времена жизни уровней вследствие излучательных переходов или столкновений, неоднородность кристаллических полей и т. д. Для дальнейшей селекции частот используются оптические резонаторы. В простейшем СВЧ-резонаторе, стенки которого имеют бесконечно высокую проводимость, могут существовать стоячие волны с дискретными частотами. Эти волны являются собственными модами резонатора. Когда ученые пытались распространить принцип мазера на оптическую область спектра, было не ясно, будут ли вообще моды у резонатора, образованного двумя зеркалами и не имеющего боковых стенок (рис. 3.1). Вследствие дифракции и потерь на пропускание в зеркалах в таком открытом резонаторе не может длительно существовать стационарное поле. Оказалось, однако, что представление о типах колебаний (модах) с успехом может быть применено и к открытому резонатору. Первое доказательство было дано с помощью компьютерных вычислений. Фокс и Ли рассмотрели систему двух плоских параллельных зеркал и задали начальное распределение поля на одном из зеркал. Затем они исследовали распространение излучения и его отражение. После первых шагов начальное световое поле рассеивалось и его амплитуда уменьшалась. Однако после, скажем, 50 двойных проходов мода поля приобретала некую окончательную форму и ее амплитуда понижалась в одно и тоже число раз при каждом отражении (с постоянным коэффициентом отражения. Стало ясно, как обобщить понятие моды на случай открытого резонатора. Это такая конфигурация поля, которая не изменяется  [c.64]

Пластинка Луммера — Герке. Она представляет собой плоскопараллельную пластинку из очень однородного стекла или плавленого кварца толщиной от 3 до 10 мм и длиной до 30 см. Для направления световых лучей в пластинку на одном конце ее сбоку посажена на оптический контакт добавочная призмочка (рис. 145, а). При другом способе один конец пластинки скошен (рис. 145, б). В обоих случаях падающие лучи нормальны к поверхности стекла, чем достигается уменьшение потерь света на отражение. Направление падающих лучей подбирается таким, чтобы угол падения на границе стекло — воздух был близок к предельному углу полного отражения. Тогда коэффициент отражения мало отличается от единицы. Пучки испытывают многократные отражения от плоскрстей пластинки и выходят из нее с почти одинаковыми интенсивностями. Можно получить до 10—15 таких пучков с каждой стороны пластинки.  [c.250]

Одно из важнейших практич. применений О. т. с.— уменьшение отражат. способности поверхностей оптич. деталей (линз, пластин и пр. подробнее см. в ст. Просветление оптики). Нанося многослойные покрытия из большого (13—17 и более) числа чередующихся слоёв с высоким и низким п, изготовляют зеркала с большим отражения коэффициенто.ч, обычно в сравнительно узкой спектр, области (не только в диапазоне видимого света, но и в УФ и ИК диапазонах). Коэфф. отражения таких зеркал (50—99,5%) зависит как от длины волны, так и от угла падения. С помощью многослойных покрытий разделяют падающий свет на прошедший и отражённый практически без потерь на поглощение на этом принципе созданы эфф. светоделители (полупрозрачные зеркала). Системы из чередующихся слоёв с высоким и низким п используют и как интерференц. поляризаторы, отражающие составляющую света, поляризованную перпендикулярно плоскости его падения, и пропускающие параллельно поляризованную составляющую. Степень поляризации в проходящем свете достигает для многослойных поляризаторов 99%. О. т. с. позволила создать получившие широкое распространение интерференц. светофильтры, полоса пропускания к-рых может быть сделана очень узкой — существующие многослойные светофильтры выделяют из спектр, области шириной в 500 нм интервалы длин волн 0,1—0,15 нм. Тонкие диэлектрич. слои применяют для защиты металлич. зеркал от коррозии и при исправлении аберраций линз и зеркал (см. Аберрации оптических систем). О. т. с. лежит в основе многих других оптич. устройств, измерит. приборов и спектр, приборов высокой разрешающей способности. Светочувствит. слои фотокатодов и болометров б. ч. представляют собой тонкослойные покрытия, эффективность к-рых существенно зависит от их оптпч. св-в. О. т. с. применяется в лазерах и квант, усилителях света прп создании приборов высокого разрешения (напр., при изготовлении интерферометров Фабри — Перо) при изготовлении дихроичных зеркал, используемых в цветном телевидении в интерференц. микроскопии (см. Микроскоп) и т. д. К эффектам О. т. с. относятся также Ньютона кольца, Полосы равного наклона. Полосы равной толщины.  [c.494]


Просветление оптики. Уже указывалось, что при создании оптических систем с большим числом отражающих поверхностей относительно малый коэффициент отражения на каждой из них (Я 4% для перехода стекло —> воздух при нормальном падении) начинает существенно влиять на общее количество света. Так, например, в сложном объективе, состоящем из нескольких линз,. дегко потерять половину светового потока. Поэтому сведение к минимуму коэффициента отражения на каждой поверхности просветление оптики) становится важной задачей, которая теперь решается путем использования явлений интерференции.  [c.217]

В отличие от активных модуляторов добротности, у которых момент выключения потерь определяется в)1еш-ними факторами, включение добротности пассивными модуляторами полностью определяется плотностью излучения внутри резонатора и их оптическими свойствами. В качестве пассивных модуляторов (или пассивных затворов) могут использоваться просветляющиеся фильтры, пленки, разрушающиеся под действием излучения, полупроводниковые зеркала с коэффициентом отражения, зависящим от интенсивности света, органические красители и т. д. Особое место среди пассивных затворов занимают затворы на основе просветляющихся фильтров. Исключительная простота таких затворов в сочетании с высокими параметрами получаемых с их помощью моноимпульсов излучения обеспечила им весьма широкое распространение. В основе работы этих затворов лежит способность просветляющихся фильтров обратимо изменять коэффициент поглощения под действием интенсивных световых потоков. Введение в резонатор пассивного затвора (рис. 35.10) приводит к увеличению порогового уровня накачки, в результате чего к моменту начала генерации па метастабилышм уровне накапливается значительное число активных частиц. При возникновении генерации лазерное излучение, проходящее через затвор, резко уменьшает его потери и запасенная энергия излучается в виде мощного импульса. Длительность этого импульса почти такая же, как и в режиме мгновенного включения добротности. Применение этих затворов значительно упрощает конструкцию генератора и позволяет получить параметры выходного импульса, близкие к предельным.  [c.284]

В то же время из выражения (2,116) находим, что (при Av = 0) 1/стт(0)Avq. На частотах УФ- и ВУФ-диапазонов при умеренных давлениях можно считать, что ширина линии Avo определяется доплеровским уширением. Следовательно [см, (2,78)], Avo Vo, поэтому dPno /dV увеличивается как (если положить Vp л Vo). При более высоких частотах, соответствующих рентгеновскому диапазону, ширина линии определяется естественным уширением, так как излучательное время жизни становится очень коротким (порядка фемтосекунд). В этом случае Avo Vq и dP JdV увеличивается как v . Таким образом, если мы, к примеру, перейдем из зеленой области (Х = 500 нм) всего лишь в мягкий рентген (X л 10 нм), то длина волны уменьшится в 50 раз, а dP op dV увеличится на несколько порядков С практической точки зрения заметим, что многослойные диэлектрические зеркала в рентгеновской области обладают большими потерями и трудны в изготовлении. Основная проблема состоит в том, что в этом диапазоне разница в показателях преломления различных материалов оказывается очень малой. Поэтому для получения приемлемых коэффициентов отражения необходимо использовать большое число (сотни) диэлектрических слоев, а рассеяние света на столь большом числе поверхностей раздела приводит к очень большим потерям. Поэтому до сих пор рентгеновские лазеры работают без зеркал в режиме УСИ (усиленное спонтанное излучение),  [c.434]

Здесь коэффициент пропускания М характеризует полные потери света при однократном прохождении по кольцу на зеркалах, в объеме образца, за счет френе-левских отражений на его гранях, на светоделителе и т. д.  [c.119]

Легко видеть, что преломление в стеклянной пластинке не влияет на конечный результат. Если не учитывать потерю света при отражении на граАице стекло — воздух и поглощения внутри стеклянных пластинок, то весь прибор можно рассматривать как плоскопараллельную пластинку воздуха, поверхности которой обладают высоким коэффициентом отражения. Поэтому интеферо-  [c.192]

Устройство наиболее распространенного гелий-неонового лазера схематически показано на рис. 9.8. Газоразрядная трубка с внутренним диаметром 1 —10 мм и длиной от нескольких десятков сантиметров до 1,5—3 м имеет торцовые плоскопараллельные стеклянные или кварцевые окна, установленные под углом Брюстера к ее оси. Для линейно поляризованного излучения с электрическим вектором в плоскости падения коэффициент отражения от них равен нулю. Поэтому брюстеровские окна обеспечивают линейную поляризацию излучения лазера и исключают потери энергии при распространении света из активной среды к зеркалам и обратно. Трубка помещена в резонатор, образованный зеркалами с многослойными диэлектрическими покрытиями (см. 5.7). Такие зеркала имеют очень высокий коэффициент отражения в нужном спектральном интервале и почти не поглощают свет. Пропускание зеркала, через которое выводится излучение, выбирается обычно около 1—2%, другого — менее 1%. Особенно удобен резонатор, близкий к конфокальному, так как он вносит малые дифракционные потери и легко поддается юстировке.  [c.454]

Влияние потерь иа добротность резонатора. Для вывода излучения из резонатора лазера необходимо использовать зеркала с коэффициентом отражения, меньшим 100%. Обозначим часть мощности в данном типе колебаний с длиной волны Я, которая уходит из резонатора при отражении от зеркала и из-за дифракции на нем, через а, а через 17 — полную энергию в моде, присутствующую в резонаторе. Если зеркала находятся на расстоянии <1 друг от друга (й >> X), то теряемая в секунду энергия равна иас1й, где с — скорость света в веществе внутри резонатора.  [c.113]


Смотреть страницы где упоминается термин Коэффициенты потерь на отражение света : [c.326]    [c.220]    [c.45]    [c.314]    [c.249]    [c.128]    [c.261]   
Справочник машиностроителя Том 2 (1955) -- [ c.230 ]



ПОИСК



Коэффициент отражения

Коэффициент потерь (КП)

Отражение

Отражение света

Отражения коэффициент (см. Коэффициент отражения)

Отражения света коэффициент

Потери при отражении от дна

Потери света на отражение



© 2025 Mash-xxl.info Реклама на сайте