Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Несущая способность при статических напряжениях

Несущая способность при статических напряжениях [6 , [10]. [И], [171, [21], [25], [28], [33], [34]  [c.439]

Несущая способность при статических напряжениях [7], [9], [12], [26], [24], [28], [31], [32]  [c.486]

Несущая способность при статических напряжениях 486  [c.625]

Если асимметрия цикла очень велика, то роль переменных напряжений при оценке прочности может оказаться несущественной и расчет следует проводить по предельному состоянию, как при статической нагрузке. В связи с этим наряду с запасом прочности по усталости [формулы (22.25), (22.26)] следует определять запас прочности и по несущей способности при статическом нагружении.  [c.678]


При статических напряжениях. При статическом нагружении деталей (когда число циклов за весь период работы 10 ), изготовленных из пластичных материалов, концентрация напряжений не снижает несущей способности детали, так как местные пластические деформации способствуют перераспределению и выравниванию напряжений по сечению. В этом случае расчеты на прочность выполняют по номинальным напряжениям а или т.  [c.17]

Следует отметить, что точечная контактная сварка не используется для изготовления несущих элементов металлоконструкций толщиной более 5 мм. Отчасти это объясняется отсутствием сварочных машин. Кроме того, прочность при переменных нагрузках соединений для толщин металла 5—6 мм, выполненных точечной контактной сваркой, исследована недостаточно. Вместе с тем для соединений, выполненных точечной контактной сваркой, отмечается [45, 1471 значительное снижение несущей способности при переменных нагрузках по сравнению со статической нагрузкой. Основной причиной снижения несущей способности точечных соединений при переменной нагрузке является наличие высоких остаточных растягивающих напряжений и большой концентрации рабочих напряжений в зоне точки [631.  [c.171]

Напряжение в детали при асимметричных циклах может оказаться близким к предельному по статической несущей способности, если средние напряжения большие.  [c.173]

Независимо от расчета на усталость нужно проверить выполнение условия обеспечения статической несущей способности при действии максимальных напряжений циклов а д и по  [c.173]

Совместный учет полей сопротивлений и напряжений начинают применять в расчетах на прочность. Так, при анализе влияния пластических деформаций на статическую несущую способность при изгибе и кручении в сочетании с растяжением и внут-22 339  [c.339]

При статических нагружениях концентрация напряжений не снижает несущей способности деталей, изготовленных из пластичных материалов это объясняется тем, что местные пластические деформации способствуют перераспределению и выравниванию напряжений в сечениях детали. В зоне концентрации при этом наблюдается упрочнение, способствующее повышению прочности. В связи с этим расчеты на прочность при статических напряжениях для деталей из пластичных материалов ведут по номинальным напряжениям.  [c.22]


Конечной целью расчета является не определение напряжений и деформаций в дисках, а оценка прочности и несущей способности. При этом определяющими являются следующие величины запас статической прочности по напряжениям и запас по разрушающей частоте вращения.  [c.394]

Аналогично проводят расчет и при сложном напряженном состоянии. При асимметричном цикле коэффициент запаса при переменных нагрузках определяется по формуле (21.17), в которой Па и Пх вычисляются соответственно по формулам (21.25) и (21.26). Запас прочности по статической несущей способности определяют по методике, изложенной в гл. 18. При этом прочность оценивается по наименьшему из запасов по усталости и по статической несущей способности.  [c.614]

Обычно в зоне повышенных напряжений образуются местные пластические деформации без образования трещины. Весь остальной объем тела за пределами этой зоны находится в упругом состоянии, и несущая способность сохраняется практически до тех же значений сил, что и при отсутствии концентрации. Это дает право при статическом нагружении не учитывать местных напряжений.  [c.399]

С помощью перечисленных методов был успешно решен ряд задач по оценке напряженно-деформированного состояния и несущей способности статически нагруженных конструкций, как однородных, так и имеющих в своем составе неоднородные участки в виде мягких и твердых прослоек При этом решение задач сводится, как правило, либо к статически возможным полям напряжений, либо к кинематически возможным полям скоростей деформаций. Возможны и решения, отвечающие одновременно статическим и кинематическим условиям, которые в данном случае считаются полными.  [c.98]

При расчете статически неопределимых стержневых систем по допускаемым напряжениям предполагают, что максимальные напряжения возникают в наиболее нагруженном стержне, а остальные стержни недогружены, т. е. несущая способность системы при таком методе расчета используется не полностью.  [c.70]

В книге излагаются вопросы несущей способности деталей машин при действии статических и переменных напряжений, а также соответствуюш,ие расчеты на прочность ряда типовых деталей машин. Приводятся данные справочного характера по механическим характеристикам, по влиянию конструктивных и технологических факторов на прочность.  [c.479]

Не всегда вычисленные выше изгибные напряжения следует рассматривать как расчетные. Дело в том, что эти напряжения носят явно выраженный местный характер. Между тем известно, что для пластичных материалов резкие перенапряжения в узкой области при статическом нагружении не сказываются существенным образом на несущей способности системы. Так, в рассмотренной цилиндрической трубе в зоне сопряжения с фланцем при увеличении давления произошло бы местное пластическое обмятие материала, а несущая способность трубы не пострадала бы. Вместе с тем местные напряжения имеют существенное значение для хрупких материалов, а также в случае изменяющихся во времени нагрузок. Этот вопрос специально будет рассмотрен в гл. 12.  [c.432]

При центральном растяжении или сжатии стержня напряжения а. возникают одновременно во всех точках опасного поперечного сечения. Если система, состоящая из стержней, испытывающих центральное сжатие и растяжение, статически определима, то исчерпание несущей способности в одном поперечном сечении одного стержня равносильно потере несущей способности всей системы в целом.  [c.585]

При расчете простейших стержневых систем, в которых распределение усилий между стержнями не зависит от их жесткости и определяется по уравнениям статики (статически определимые системы), получаются одинаковые результаты при использовании любого метода расчета — по допускаемым напряжениям и по предельным нагрузкам, ибо несущая способность системы оказывается исчерпанной, когда усилие в одном (наиболее напряженном) стержне достигает предельного значения.  [c.548]


Рассмотренный расчет на прочность по методу предельного состояния [88, 89] не учитывает возможной неравномерности в распределении напряжений и концентрации напряжений в сварной трубе вследствие отклонения сечения от правильной геометрической формы [60] из-за наличия усиления сварного шва, смещения кромок в нем, овальности и т. п. Предполагается, что если указанные зоны концентрации напряжений возникают в стенках трубы, то они сглаживаются за счет местной пластической деформации, и это не отражается на общей несущей способности трубы, которая определяется ее прочностью на разрыв от воздействия внутреннего статического давления. Указанное положение об отсутствии влияния концентрации напряжений на несущую способность труб при статическом нагружении было проверено рядо.м экспериментальных исследований.  [c.140]

Характерным является отсутствие влияния местной неоднородности напряженного состояния на несущую способность труб при однократном нагружении внутренним давлением. Так, в результате развития пластических деформаций при статическом разрушении устраняется овализация сечения, сглаживается концентрация и изгибные эффекты в зоне сварного шва из-за наличия усиления, смещения кромок и угловатости.  [c.160]

Для оценки несущей способности элементов конструкций при термоциклическом нагружении на стадии частичного разрушения от образования трещин длительного циклического разрушения необходим анализ закономерностей распространения этих трещин при повышенных температурах. Для температур, при которых еще не проявляются эффекты ползучести и длительного статического повреждения, скорость распространения трещины рассматривается [40] как и при нормальной температуре в степенной зависимости Пэриса от размаха интенсивности напряжений hK  [c.31]

Необходимыми для рассмотренного выше расчетного определения долговечности элементов конструкций на стадии образования л развития трещин являются испытания гладких стандартных образцов при кратковременном и длительном статическом нагружении (с оценкой характеристик прочности и пластичности), а также образцов с начальными трещинами при малоцикловом нагружении при соответствующей температуре и времени выдержки (с измерением скорости развития трещин). Приведенные выше уравнения позволяют осуществлять пересчет получаемых из экспериментов данных на другие числа циклов и времена нагружения. Воспроизведение в опытах эксплуатационных режимов нагружения, уровней номинальной и местной напряженности, исходной дефективности с учетом кинетики изменения статических и циклических свойств представляется пока трудноосуществимым. В связи с этим разработка способов приближенной оценки несущей способности элементов конструкций, работающих при высоких температурах (когда имеет место активное взаимодействие длительных статических и циклических повреждений), приобретает существенное значение.  [c.120]

Несущая способность деталей при действии статических нагрузок, при которой сохраняется надежная работа машин, бз дет обеспечена при действии на деталь нагрузок, не вызывающих разрушения деталей, недопустимых условиями эксплуатации перемещений и деформаций. В условиях длительного действия статических нагрузок и повышенных температур расчет на ирочность конструктивных элементов (детали паровых и газовых турбин, реакторов и др.) основывается на анализе перераспределения напряжений в связи с ползучестью материала и на оценке сопротивления хрупкому разрушению металла, постепенно теряющего пластичность. В результате ползучести деформации деталей могут во времени достигать  [c.221]

Полученные выражения характеризуют роль дисперсии нагруженности и несущей способности в числах циклов и напряжениях для вероятности разрушения и, следовательно, надежности. По ним, например, количественно оценивается роль стабильности технологии обработки, и в связи с этим стабильность сопротивления усталости (коэффициенты вариации Vn и ) на эксплуатационную надежность в связи с относительным уровнем нагруженности, характеризуемой запасами по средним значениям ( jv и Аналогично рассматривается вопрос об оценке вероятности длительного статического разрушения при повышенных температурах.  [c.144]

Определение несущей способности для сложного нагружения растяжением — сжатием, изгибом или кручением, т. е. при произвольном возрастании статических и переменных напряжений в детали. Запас прочности определяется по статической и переменной Од составляющим напряжений цикла и по максимальному напряжению <г ах [13)  [c.454]

Несущая способность деталей при действии статических напряжений соответствует тем значениям нагрузок, при которых либо возникают перемещения, превышающие предельно допустимые (несущая способность по пере.мещениям), либо резко увеличиваются линейные или угловые относительно деформации при незначительном увеличении нагрузки (несущая способность по деформации), либо возникает разрушение детали (несущая способность по разрушению).  [c.486]

Определение несущей способности для сложного нагружения растяжением — сжатием, изгибом или кручением, т. е. при произвольном возрастании статических и переменных напряжений в детали.  [c.502]

В связи с этим максимальные упругие напряжения, очевидно, не определяют несущей способности корпуса и при пластичном материале й статической нагрузке могут быть достаточно высокими, но не превосходящими предел текучести и предел длительной прочности. Однако более подробный анализ прочности корпуса с учетом влияния упомянутых выше факторов, позволяющий детально проследить изменение напряженного состояния конструкции во времени, весьма важен. Поэтому особенно большое значение имеет разработанная в последнее время в ЦКТИ [68] программа расчета корпуса турбины для состояния не-установившейся ползучести. Программа предусматривает изменение температуры по толщине стенки и вдоль образующей корпуса и позволяет рассчитывать оболочку с произвольным очертанием меридионального сечения. Методика дает возможность определять напряжения и деформации конструкции за весь срок службы конструкции.  [c.401]


Классическая задача о распределении нагрузки по виткам резьбы изложена достаточно подробно для широкого класса соединений, включая резьбовые соединения оболочек, шариковинтовые механизмы и др. Новые результаты, которые приведены в разделах, посвященных оценке концентрации напряжений в резьбе, можно использовать для прогнозирования долговечности резьбовых соединений. Большое внимание уделено экспериментальным результатам исследования несущей способности резьбовых соединений при действии статических и переменных нагрузок. Они дают достаточно полное представление о влиянии конструктивных и технологических факторов, материала, покрытий, точности изготовления, рабочей температуры на работоспособность резьбовых соединений. Даны сведения, необходимые для оценки эксплуатационной надежности соединений (затяжка, свинчиваемость, заедание и др.).  [c.3]

Наблюдается противоположное влияние двух факторов неравномерность распределения напряжений снижает прочность стержня, а объемность напряженного состояния вызывает повышение прочности. Чем пластичнее материал, тем в большей степени сказывается влияние второго фактора. Малопластичные материалы (титановые сплавы, чугун и др.) весьма чувствительны к концентрации напряжений их несущая способность может снижаться (в отличие от пластичных материалов) даже при статических нагрузках.  [c.138]

Из этой эормулы следует, что эффект выигрыша в несущей способности при переходе от допускаемых напряжений к предельным состояниям для двутавровых балок значительно меньше, чем для балок сплошного сечения. Однако, как будет ясно из последующего (см. 12.9), и для двутавровых сечений переход к расчету по предельным состояниям весьма эффективен, если рассматривается статически неопределимая балка.  [c.275]

Макроскопические характеристики усталостного разрушения металлов и волокнистых композиционных материалов очень похожи, хотя на микроуровне они различаются очень сильно. Хрупкие материалы, такие как стекло, углерод и бор, не снижают свою несущую способность при циклических нагрузках в отличие от пластически деформируемых материалов. Следовательно, композиционные материалы на основе хрупких волокон должны обладать высокой усталостной выносливостью, если волокна выдерживают основную нагрузку. Это предположение выполняется в случае пластиков, армированных однонаправленными углеродными и борными волокнами при усталостных испытаниях на одноосное напряжение. Диаграммы зависимости максимального напряжения от числа циклов до разрушения (диаграммы а—N) для таких материалов действительно практически горизонтальны и при циклических нагрузках, лежащих ниже полосы разброса статической прочности при растяжении, истинное усталостное разрушение практически не наблюдается. Бимон и Харрис [140], а также Оуэн и Моррис [141] получили одинаковые результаты для карбопластиков на основе эпоксидных и полиэфирных связующих  [c.136]

Расчет вала на статическую прочность сводится к определению напряжений от вращающихся и невращающихся нагрузок и к вычислению запаса прочности по выбранному критерию несущей способности. Критериями статической несущей способности валов могут быть наступление пластических деформаций, возникновение перемещений, при которых нарушается нормальная работа узла или происходит разрушение вала,  [c.322]

Температура эксплуатации мартенситно-стареющих сталей не превосходит 400 °С в связи с явлениями старения н перестари-вания. Высокая хладностойкость позволяет успешно эксплуатировать сварные изделия до температур —70--100 °С, а из отдельных марок стали и при криогенных температурах. Важнейшее свойство сварных изделий — высокая несущая способность при приложении статических нагрузок, в том числе и при наличии концентраторов напряжений. Это не касается конструкций, работающих в условиях вибрационных нагрузок, где преимуществ по сравнению с высокопрочными низколегированными сталями не наблюдалось. При оо,2 1400 МПа в ряде случаев отмечалось ускоренное развитие трещин в сварных соединениях. Другим перспективным направлением использования мартенситно-стареющих сталей является износостойкая наплавка.  [c.304]

Расчет статически неопределимых систем по несущей способности производится при помощи только условий статики. В этих условиях продольные усилия принимаются равными произведениям допускаемых напряжений на площади поперечных сечений во всех тех элементах, в которых достижение напряжениями значения предела текучести материала приводит систему в геометрически изменяемое состояние. Такая методика расчета основывается на замене действительной диаграммы растяжения материала идеализированной диаграммой Прандтля, в которой площадка текучести принимается неограниченнойГ"  [c.29]

Здесь Akh — несущая способность гладкой полосы, ширина которой равна минимальной ширине надрезанной полосы. Выражение, стоящее в правой части формулы (15.13.3), всегда больше единицы, оно называется коэффициентом поддержки. При любом виде надреза несущая способность полосы с концентратором будет больше, чем несущая способность полосы с той же минимальной шириной. Это следует из статического экстремального принципа. Если предположить, что в заштрихованной на рис. 15.13.2 полосе растягивающее напряжение равно пределу текучести, а в остальной части полосы напряжения равны нулю, мы получим некоторое статически возможное напряженное состояние соответствующая нагрузка будет служить оценкой для предельной нагрузки снизу. Что касается поля скоростей для полосы с двумя круговыми вырезами, расчет его оказывается далеко не элементарным. Разделенные пластическо зоной части полосы движутся поступательно вдоль оси, удаляясь одна от другой с относительной скоростью V на граничных характеристиках нормальная составляющая скорости задана и выполнены условия (15.8.16). Эти данные позволяют или строить поле скоростей численно, или же решать задачу аналитически по методу Рима-на, представляя результат в виде некоторых интегралов, содержащих функции Бесселя. Что касается полноты построения решения, этот вопрос остается открытым. Возможность построения поля скоростей доказывает лишь кинематическую допустимость решения, следовательно, формула (15.3.3) дает наверняка верхнюю оценку. Но могут существовать и другие кинематически возможные схемы, например скольжение по прямой тп, показанной на рис. 15.13.1 штриховой линией, которые дадут для Р оценку более низкую, чем оценка (15.13.3).  [c.522]

Выбор области контактных давлений, охватывающей интервал Os < (/max НВ, обусловлен нреждв всего ее практической неизученностью. В настоящее время точное определение деформаций и напряжений в реальных условиях трения не представляется возможным как вследствие локальности процесса, так и из-за значительного их градиента по глубине. Аналитическое решение этой задачи, основанное на достижениях теории упругости и теории пластичности, получено соответственно только для областей упругого и пластического контактов [20, 22]. Область упругопластических деформаций пока не поддается аналитической оценке. Предложенные в Гб] критерии перехода от упругого контакта к пластическому через глубину относительного внедрения являются в достаточной степени условными, так как не учитывают сил трения. При трении, как и при статическом вдавливании индентора, до сих пор нет однозначного критерия пластичности, который указывал бы на условия наступления пластической деформации [96]. Если при одноосном нагружении пластическая деформация металла начинается при напряжениях, равных пределу текучести, то при трении вследствие сложного напряженного состояния несущая способность контакта повышается и пластическая деформация начинается при значениях q = ds, где Ts — предел текучести с — коэффициент, который в зависимости от формы индентора, упрочнения и т. д. может меняться в значительных пределах (от 1 до 10) [6, 97]. В связи с тем что структурные изменения являются комплексной характеристикой состояния поверхностного слоя, представляется целесообразным их исследование именно в унругопластической области, где они могут служить критерием степени развития пластической деформации, критерием перехода от упругого контакта к пластическому.  [c.42]


Вследствие того что пластмассы имеют относительно низкую механическую прочность, необходимо ввести поправочный коэффициент, который позволит оценить способность втулки воспринимать нагрузки в статическом положении. Расчет такого параметра производится с учетом ползучести и снижения механических свойств в различных температурных условиях. Таким параметром является несущая способность втулок под которой понимается величина допустимого среднего удельного давления для втулки при данном зазоре, толщине, диаметре при статическом нагружении. Учитывая, что расчетная схема втулки гидроупора аналогична при статическом нагружении расчетной схемы втулки подшипника скольжения, воспользуемая методикой расчета допустимого среднего удельного давления для втулки подшипника скольжения [49]. На рис. 56, в изображена эпюра распределения напряжений во втулке штока. При расчете величины допустимого среднего удельного давления необходимо это учесть.  [c.121]

Как упоминалось в 1, применяемые в настоящее время в сепа-раторостроении нормативные методы расчета на прочность предусматривают оценку статической несущей способности их элементов на основе определения упругих напряжений при максимальных рабочих нагрузках и выполнение условий отсутствия деформаций, нарушающих нормальную работу сопрягаемых деталей. При этом запасы по пределу текучести, например, для аустенитной стали принимаются равными 2,0и 1,5 соответственно для мембранных напряжений и напряжений в зонах концентрации  [c.130]


Смотреть страницы где упоминается термин Несущая способность при статических напряжениях : [c.32]    [c.97]    [c.10]    [c.195]    [c.160]    [c.487]    [c.30]   
Справочник машиностроителя Том 3 Изд.2 (1956) -- [ c.439 ]

Справочник машиностроителя Том 3 Издание 2 (1955) -- [ c.439 ]

Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.3 , c.43 , c.439 ]



ПОИСК



НАПРЯЖЕНИЯ - НЕСУЩАЯ СПОСОБНОСТЬ

Напряжения статические

Несущая при статических напряжениях

Несущая способность

Несущая способность деталей при статических напряжениях

Несущая способность статическая

Предельные состояния и несущая способность при длительном действии статических и циклических нагруСопротивление усталости при длительном действии переменных напряжений

Ток несущий



© 2025 Mash-xxl.info Реклама на сайте