Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Несущая способность при статическом нагружении

Если асимметрия цикла очень велика, то роль переменных напряжений при оценке прочности может оказаться несущественной и расчет следует проводить по предельному состоянию, как при статической нагрузке. В связи с этим наряду с запасом прочности по усталости [формулы (22.25), (22.26)] следует определять запас прочности и по несущей способности при статическом нагружении.  [c.678]


Предельные состояния и несущая способность при статическом нагружении  [c.71]

Максимальные температуры цикла, для которых проводится указанная ниже оценка несущей способности, ограничиваются температурами до 450° С для деталей из аустенитных хромоникелевых сталей и температурами до 350° С для деталей из углеродистых и низколегированных сталей. При этих температурах деформации ползучести и длительные статические повреждения не учитываются. Настоящая методика по оценке несущей способности при циклическом нагружении не распространяется на те случаи работы конструкций и машин, когда возникают деформации ползучести.  [c.216]

Максимальные температуры цикла, при которых проводят оценку несущей способности элементов конструкций, — 450 °С для аустенитных хромоникелевых сталей и 350 °С для углеродистых и низколегированных сталей. При этих температурах деформации ползучести и длительные статические повреждения малы и при расчете не учитываются. Указанный метод оценки несущей способности при циклическом нагружении не распространяется на те случаи, когда в элементах конструкций и машин возникают деформации ползучести.  [c.121]

Обычно в зоне повышенных напряжений образуются местные пластические деформации без образования трещины. Весь остальной объем тела за пределами этой зоны находится в упругом состоянии, и несущая способность сохраняется практически до тех же значений сил, что и при отсутствии концентрации. Это дает право при статическом нагружении не учитывать местных напряжений.  [c.399]

Не всегда вычисленные выше изгибные напряжения следует рассматривать как расчетные. Дело в том, что эти напряжения носят явно выраженный местный характер. Между тем известно, что для пластичных материалов резкие перенапряжения в узкой области при статическом нагружении не сказываются существенным образом на несущей способности системы. Так, в рассмотренной цилиндрической трубе в зоне сопряжения с фланцем при увеличении давления произошло бы местное пластическое обмятие материала, а несущая способность трубы не пострадала бы. Вместе с тем местные напряжения имеют существенное значение для хрупких материалов, а также в случае изменяющихся во времени нагрузок. Этот вопрос специально будет рассмотрен в гл. 12.  [c.432]


При статических напряжениях. При статическом нагружении деталей (когда число циклов за весь период работы 10 ), изготовленных из пластичных материалов, концентрация напряжений не снижает несущей способности детали, так как местные пластические деформации способствуют перераспределению и выравниванию напряжений по сечению. В этом случае расчеты на прочность выполняют по номинальным напряжениям а или т.  [c.17]

Рассмотренный расчет на прочность по методу предельного состояния [88, 89] не учитывает возможной неравномерности в распределении напряжений и концентрации напряжений в сварной трубе вследствие отклонения сечения от правильной геометрической формы [60] из-за наличия усиления сварного шва, смещения кромок в нем, овальности и т. п. Предполагается, что если указанные зоны концентрации напряжений возникают в стенках трубы, то они сглаживаются за счет местной пластической деформации, и это не отражается на общей несущей способности трубы, которая определяется ее прочностью на разрыв от воздействия внутреннего статического давления. Указанное положение об отсутствии влияния концентрации напряжений на несущую способность труб при статическом нагружении было проверено рядо.м экспериментальных исследований.  [c.140]

Такой величиной является — величина допустимого среднего удельного давления для втулки при заданном зазоре, толщине, диаметре при статическом нагружении (несущая способность втулок).  [c.125]

Определение несущей способности для сложного нагружения растяжением — сжатием, изгибом или кручением, т. е. при произвольном возрастании статических и переменных напряжений в детали. Запас прочности определяется по статической и переменной Од составляющим напряжений цикла и по максимальному напряжению <г ах [13)  [c.454]

Определение несущей способности для сложного нагружения растяжением — сжатием, изгибом или кручением, т. е. при произвольном возрастании статических и переменных напряжений в детали.  [c.502]

Оценка предельной несущей способности конструкционных сплавов и конструктивных элементов при наличии в них трещин в условиях циклического нагружения, особенно при хрупком характере разрушения, является сложной задачей. К настоящему времени разработаны в основном вопросы и предложены критерии хрупкого разрушения при статическом нагружении.  [c.198]

Известные в литературе модели хрупкого разрушения тел с трещинами не учитывают изменение реологических свойств материалов в пластически деформируемой зоне у вершины трещины при циклическом нагружении образцов и динамический характер распространения трещины при ее нестабильном развитии и поэтому не позволяют прогнозировать влияние режимов циклического нагружения на характеристики вязкости разрушения и закономерности перехода от усталостного к хрупкому разрушению конструкционных сплавов. Это не позволяет обосновать расчеты предельной несущей способности и долговечности тел с трещинами при циклическом нагружении с учетом стадии их нестабильного развития и ответить на практически важные вопросы в каких случаях циклически нагружаемая конструкция с трещиной разрушится при нагрузках меньших, чем нагрузка, которую она может выдержать при статическом нагружении при каких условиях полное разрушение конструкции произойдет при первом скачке трещины, а при каких — после определенного числа скачков.  [c.210]

Остаточные напряжения могут повысить несущую способность стали при статическом нагружении в случае концентрации напряжений, если знак остаточных напряжений противоположен знаку наиболее опасных напряжений зоны концентратора, возникающих от внешнего нагружения.  [c.135]

Глава 1 НЕСУЩАЯ СПОСОБНОСТЬ И РАСЧЕТ НА ПРОЧНОСТЬ В ВЯЗКОМ СОСТОЯНИИ ПРИ СТАТИЧЕСКОМ НАГРУЖЕНИИ  [c.10]


Для конструкций из пластичных материалов при статическом нагружении возможно выполнение расчета на прочность по несущей способности (по  [c.172]

Экстремальные принципы статики жесткопластического тела. Теоремы о границах несущей способности. Согласно (2.1) принцип виртуальной мощности при статическом нагружении имеет вид  [c.102]

При статических нагружениях концентрация напряжений не снижает несущей способности деталей, изготовленных из пластичных материалов это объясняется тем, что местные пластические деформации способствуют перераспределению и выравниванию напряжений в сечениях детали. В зоне концентрации при этом наблюдается упрочнение, способствующее повышению прочности. В связи с этим расчеты на прочность при статических напряжениях для деталей из пластичных материалов ведут по номинальным напряжениям.  [c.22]

В сварных соединениях из стали Ст. 3 при статическом нагружении и положительной температуре непровар в середине шва до 20% и непровар корня шва до 15% не снижает несущей способности стыковых соединений, причем усиление шва при непроваре корня свыше 25% не повышает прочность соединения до прочности основного металла.  [c.62]

При статическом нагружении несущая способность уголка  [c.154]

С помощью перечисленных методов был успешно решен ряд задач по оценке напряженно-деформированного состояния и несущей способности статически нагруженных конструкций, как однородных, так и имеющих в своем составе неоднородные участки в виде мягких и твердых прослоек При этом решение задач сводится, как правило, либо к статически возможным полям напряжений, либо к кинематически возможным полям скоростей деформаций. Возможны и решения, отвечающие одновременно статическим и кинематическим условиям, которые в данном случае считаются полными.  [c.98]

При расчете статически неопределимых стержневых систем по допускаемым напряжениям предполагают, что максимальные напряжения возникают в наиболее нагруженном стержне, а остальные стержни недогружены, т. е. несущая способность системы при таком методе расчета используется не полностью.  [c.70]

Несущая способность элементов конструкций включает в себя множество аспектов, связанных с разрушением материалов в результате растрескивания, потери устойчивости, усталости и ползучести при статическом и динамическом нагружении в условиях инертной или коррозионной окружающей среды и нагрева. Процесс разрушения волокнистых композиционных материалов еще более усложняется наличием множества независимых и взаимно накладывающихся форм разрушения, таких в частности, как излом волокон, потеря устойчивости отдельных волокон, рас-  [c.63]

Характерным является отсутствие влияния местной неоднородности напряженного состояния на несущую способность труб при однократном нагружении внутренним давлением. Так, в результате развития пластических деформаций при статическом разрушении устраняется овализация сечения, сглаживается концентрация и изгибные эффекты в зоне сварного шва из-за наличия усиления, смещения кромок и угловатости.  [c.160]

Для оценки несущей способности элементов конструкций при термоциклическом нагружении на стадии частичного разрушения от образования трещин длительного циклического разрушения необходим анализ закономерностей распространения этих трещин при повышенных температурах. Для температур, при которых еще не проявляются эффекты ползучести и длительного статического повреждения, скорость распространения трещины рассматривается [40] как и при нормальной температуре в степенной зависимости Пэриса от размаха интенсивности напряжений hK  [c.31]

Необходимыми для рассмотренного выше расчетного определения долговечности элементов конструкций на стадии образования л развития трещин являются испытания гладких стандартных образцов при кратковременном и длительном статическом нагружении (с оценкой характеристик прочности и пластичности), а также образцов с начальными трещинами при малоцикловом нагружении при соответствующей температуре и времени выдержки (с измерением скорости развития трещин). Приведенные выше уравнения позволяют осуществлять пересчет получаемых из экспериментов данных на другие числа циклов и времена нагружения. Воспроизведение в опытах эксплуатационных режимов нагружения, уровней номинальной и местной напряженности, исходной дефективности с учетом кинетики изменения статических и циклических свойств представляется пока трудноосуществимым. В связи с этим разработка способов приближенной оценки несущей способности элементов конструкций, работающих при высоких температурах (когда имеет место активное взаимодействие длительных статических и циклических повреждений), приобретает существенное значение.  [c.120]

Полученные выражения характеризуют роль дисперсии нагруженности и несущей способности в числах циклов и напряжениях для вероятности разрушения и, следовательно, надежности. По ним, например, количественно оценивается роль стабильности технологии обработки, и в связи с этим стабильность сопротивления усталости (коэффициенты вариации Vn и ) на эксплуатационную надежность в связи с относительным уровнем нагруженности, характеризуемой запасами по средним значениям ( jv и Аналогично рассматривается вопрос об оценке вероятности длительного статического разрушения при повышенных температурах.  [c.144]


Подшипники двигателей работают при динамическом нагружении. При их расчете следует учитывать влияние на несущую способность масляного слоя, тепловыделение и теплоотвод следующих факторов клинового действия масляного слоя, эффект поворота вектора нагрузки, частоту и амплитуду ее пульсации. До сего времени из трех перечисленных факторов учитывается только один — клиновое действие слоя. Учет остальных двух факторов еще не освоен, и подшипники рассчитывают на условную статическую нагрузку.  [c.15]

Рнс. 2.34. Поведение при статическом и усталостном нагружениях однонаправленного боропластика с надрезом (размер надреза 6,35 мм, СТтах = 400 Н/мм ). См. рис. 2.33. а—несущая способность при растяжении (-) слоистого композита с надрезом при разрушении от распространения трещины в направлении нагружения.  [c.94]

Вследствие того что пластмассы имеют относительно низкую механическую прочность, необходимо ввести поправочный коэффициент, который позволит оценить способность втулки воспринимать нагрузки в статическом положении. Расчет такого параметра производится с учетом ползучести и снижения механических свойств в различных температурных условиях. Таким параметром является несущая способность втулок под которой понимается величина допустимого среднего удельного давления для втулки при данном зазоре, толщине, диаметре при статическом нагружении. Учитывая, что расчетная схема втулки гидроупора аналогична при статическом нагружении расчетной схемы втулки подшипника скольжения, воспользуемая методикой расчета допустимого среднего удельного давления для втулки подшипника скольжения [49]. На рис. 56, в изображена эпюра распределения напряжений во втулке штока. При расчете величины допустимого среднего удельного давления необходимо это учесть.  [c.121]

При многоочаговом повреждении все элементы конструкции разделяются на две группы. К первой группе относятся те поврежденные элементы, разрушение которых не оказывает влияния на остаточную прочность конструкции. Элементы второй группы определяют остаточную прочность конструкции, разрушение любого из них при статическом нагружении вызьгеает слом конструкции. Тот из элементов второй группы, который разрушается первым в процессе статического нагружения, является критическим. Нижние участки кривых, обозначенных на рис. 4.2.14 пунктиром, определяют нагрузку на конструкцию, при которой происходит слом элемента без потери несущей способности конструкции.  [c.424]

По классификащга Международного института сварки, принятоЙБ 1973 году, непровары, несплавленияит. п. можно отнести к плоскостным дефектам. Именно так они сгруппированы в настоящее время в ряде нормативных документов, касающихся методик и приборных средств поиска дефектов при контроле качества сварки. Влиянию плоскостных дефектов на несущую способность сварных соединений посвящено большое количество работ, авторами которых являются известные ученые Г. А. Николаев, В. А. Винокуров, С. А. Куркин, И. И. Макаров, С. В. Румянцев, Г. В. Жемчужников, В. С. Гиренко и др. /15-18/. В этих и после дую пщх работах многочисленные экспериментальные данные свидетельствуют о том, что в условиях статического нагружения при нормальных температурах прочность сварных соединений, близких к однородным (Kg= 1), с плоскостными дефектами в корне шва изменяется пропорционально уменьшению площади поперечного сечения (рис. 1.12, 0,6, прямая I), Сварные соединения в данном случае считаются нечувствительными к дефектам. Под чувствительностью при этом понимается степень снижения  [c.30]

Исследованы механизмы разрушения материалов, армированных волокнами при статическом и циклическом нагружениях. Показана важность и Необходимость рассмотрения разрушения композитов на микроуровне. Причина этого заключается в первую очередь в присущей этим материалам неоднородности и анизотропии, приводящим к существованию многочисленных плоскостей слабого сопротивления (например, сдвигу и поперечному отрыву), по которым, как правило, распространяются трещины. В начале главы коротко рассмотрены виды разрушения однонаправленных слоистых композитов без надрезов при растяжении — сжатии в направлении армирования и перпендикулярном направлении, а также при сдвиге. Акцент сделан на особенностях разрушения этих композитов на уровне компонент. Макроповедение композитов оценивалось на основании анализа неустойчивого развития повреждений, возникших на микроуровне. При помощи модели, названной моделью сдвигового анализа, учитывающей неоднородность композита на микроуровне, теоретически обосновано аномальное влияние диаметра отверстия в слоистом композите на несущую способность. Этот метод анализа также использован для моделирования поведения слоистого композита со сквозным отверстием.  [c.33]

Выбор области контактных давлений, охватывающей интервал Os < (/max НВ, обусловлен нреждв всего ее практической неизученностью. В настоящее время точное определение деформаций и напряжений в реальных условиях трения не представляется возможным как вследствие локальности процесса, так и из-за значительного их градиента по глубине. Аналитическое решение этой задачи, основанное на достижениях теории упругости и теории пластичности, получено соответственно только для областей упругого и пластического контактов [20, 22]. Область упругопластических деформаций пока не поддается аналитической оценке. Предложенные в Гб] критерии перехода от упругого контакта к пластическому через глубину относительного внедрения являются в достаточной степени условными, так как не учитывают сил трения. При трении, как и при статическом вдавливании индентора, до сих пор нет однозначного критерия пластичности, который указывал бы на условия наступления пластической деформации [96]. Если при одноосном нагружении пластическая деформация металла начинается при напряжениях, равных пределу текучести, то при трении вследствие сложного напряженного состояния несущая способность контакта повышается и пластическая деформация начинается при значениях q = ds, где Ts — предел текучести с — коэффициент, который в зависимости от формы индентора, упрочнения и т. д. может меняться в значительных пределах (от 1 до 10) [6, 97]. В связи с тем что структурные изменения являются комплексной характеристикой состояния поверхностного слоя, представляется целесообразным их исследование именно в унругопластической области, где они могут служить критерием степени развития пластической деформации, критерием перехода от упругого контакта к пластическому.  [c.42]

Поведение пластинок и оболочек за пределами упругости, их несущая способность представляют значительный интерес для многих областей техники. Расчету пластинок и оболочек по предельному равновесию посвящена довольно обширная литература. Необходимо отметить, что фундаментальные теоремы теории предельного равновесия — статическая и кинематическая были впервые сформулированы и применены к расчету пластинок в Советском Союзе (работы А. А. Гвоздева [23]). В дальнейшем ряд задач о несущей способности пластинок был рассмотрен В. В. Соколовским [155], А. А. Ильюшиным [69], С. М. Фейнбергом [167], А. Р. Ржаницыным [141], Гопкинсом и Прагером [28] и другими авторами. Несущая способность цилиндрической оболочки при нагружении кольцевой нагрузкой была исследована впервые А. А. Ильюшиным [69]. Большое значение в развитии теории упруго-пластических оболочек имели труды Ю. Н. Работнова [133], Г. С. Шапиро, В. И. Ро-зенблюма, М. И. Ерхова. Обстоятельные обзоры работ отечественных и зарубежных авторов, посвященных проблеме упруго-пластического состояния оболочек, даны в статье Г. С. Шапиро [183] и в монографии Ходжа [203].  [c.174]


Информация о действительной нагруженности и несущей способности — важный элемент при решении вопросов расчета конструкций, совершенствования их схем и форм, применения поверхностного упрочнения и других способов повышения эксплуатационной надежности и ресурса. Далее рассматриваются некоторые вопросы оценки вероятности неразруше-ния (надежности) в связи с условиями нагружения и несущей способностью элементов конструкций. Отказы по прочности, оцениваемые как возникновение разрушения, повреждение опасными трещинами или недопускаемые деформации, могут возникать в результате однократных или кратных перегрузок как статических, так и динамических или же вследствие наличия дефектов, достаточных для разрушения элементов конструкций при свойственном им уровне эксплуатационной нагруженности. Разрушения такого типа рассматриваются как статические, их вероятностная оценка осуществляется с учетом кратности статического нагружения, статистики возможных статических нагрузок и дисперсии статической прочности во внересурсной постановке. Это, например, уже давно делается в области оценки надежности строительных конструкций, гидротехнических сооружений и ряда других, нагруженных в основном статической нагрузкой.  [c.137]

Для элементов современных конструкций, работающих в условиях воздействия температурных и силовых факторов, процессы перераспределения деформации, накопления новреждений и изменения механических свойств оказывают сопоставимое влияние на кинетику несущей способности, отражая особенности воздействия циклических и статических составляющих нагруженности. Эта кинетика особенно выражена для условий малоциклового нагружения при новынгенных температурах на стадиях образования и развития трещин.  [c.16]

По данным Г. Юнкера, несущая способность соединений с болтами М8х20 из высокопрочной стали (Ов — 1410 МПа) при ударном нагружении повышается на 61,5 % по сравнению со статическим.  [c.176]


Смотреть страницы где упоминается термин Несущая способность при статическом нагружении : [c.160]    [c.161]    [c.32]    [c.248]    [c.97]    [c.10]    [c.86]    [c.160]    [c.216]    [c.180]   
Несущая способность и расчеты деталей машин на прочность Изд3 (1975) -- [ c.71 ]



ПОИСК



Нагружение статическое

Несущая способность

Несущая способность и расчет на прочность в вязком состояния при статическом нагружении (Р. М. ШнейдероСопротивление статическому пластическому деформированию

Несущая способность статическая

Предельные состояния и несущая способность при статическом нагружении

Способность несущая при нагружении

Ток несущий



© 2025 Mash-xxl.info Реклама на сайте