Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Несущая способность деталей при статических напряжениях

Коэффициент сопротивления в пластической области характеризует также влияние на несущую способность деталей при статической нагрузке ограничений по жесткости, налагаемых в соответствии с условиями эксплуатации конструкции. В случае, когда пластическая или остаточная деформация в детали не может быть допущена, Q p = Qp и = 1. Если предельно допустимые значения деформаций детали выше значений деформаций, соответствующих достижению предела текучести, то коэффициент сопротивления К, характеризует возрастание несу щей способности благодаря упруго-пластическому перераспределению напряжений в процессе деформирования. Это возрастание может быть использовано в соответствии с допустимыми перемещениями, уже превышающими упругие. Коэффициент зависит от распределения напряжений за пределами упругости и параметров диаграммы деформирования. Определение предельных нагрузок и по ним величин коэффи-  [c.440]


Несущая способность деталей при действии статических нагрузок, при которой сохраняется надежная работа машин, бз дет обеспечена при действии на деталь нагрузок, не вызывающих разрушения деталей, недопустимых условиями эксплуатации перемещений и деформаций. В условиях длительного действия статических нагрузок и повышенных температур расчет на ирочность конструктивных элементов (детали паровых и газовых турбин, реакторов и др.) основывается на анализе перераспределения напряжений в связи с ползучестью материала и на оценке сопротивления хрупкому разрушению металла, постепенно теряющего пластичность. В результате ползучести деформации деталей могут во времени достигать  [c.221]

Несущая способность деталей при действии статических напряжений соответствует тем значениям нагрузок, при которых либо возникают перемещения, превышающие предельно допустимые (несущая способность по пере.мещениям), либо резко увеличиваются линейные или угловые относительно деформации при незначительном увеличении нагрузки (несущая способность по деформации), либо возникает разрушение детали (несущая способность по разрушению).  [c.486]

Критерии несущей способности деталей при упруго-пластическом циклическом деформировании могут быть приняты такими же, что и при статическом деформировании, но нужно иметь в виду, что в этом случае деформации, напряжения и перемещения в детали от цикла к циклу изменяются.  [c.118]

В книге излагаются вопросы несущей способности деталей машин при действии статических и переменных напряжений, а также соответствуюш,ие расчеты на прочность ряда типовых деталей машин. Приводятся данные справочного характера по механическим характеристикам, по влиянию конструктивных и технологических факторов на прочность.  [c.479]

При статических напряжениях. При статическом нагружении деталей (когда число циклов за весь период работы 10 ), изготовленных из пластичных материалов, концентрация напряжений не снижает несущей способности детали, так как местные пластические деформации способствуют перераспределению и выравниванию напряжений по сечению. В этом случае расчеты на прочность выполняют по номинальным напряжениям а или т.  [c.17]

Величина пластического деформирования, которую, как правило, приходится учитывать при рассмотрении статической несущей способности деталей, невелика и превышает деформацию, соответствующую пределу текучести (в ранее указанном смысле) в 5—10 раз. При этих степенях деформирования единственность диаграммы деформирования обеспечивается в координатах интенсивность напряжений — интенсивность деформаций Oi — , , где  [c.13]


При расчете надежности элементов ПТМ в процессе проектирования определяются средний ресурс и вероятность безотказной работы по условию обеспечения циклической и статической прочности, а также по условию изнашивания. Важнейшее значение при этом имеет определение эксплуатационных нагрузок. Известны экспериментальные, аналитические и имитационные методы определения нагрузок и напряжений в механизмах и металлоконструкциях. Для расчета надежности необходимо определение несущей способности деталей с учетом ее естественного разброса.  [c.5]

При статических нагружениях концентрация напряжений не снижает несущей способности деталей, изготовленных из пластичных материалов это объясняется тем, что местные пластические деформации способствуют перераспределению и выравниванию напряжений в сечениях детали. В зоне концентрации при этом наблюдается упрочнение, способствующее повышению прочности. В связи с этим расчеты на прочность при статических напряжениях для деталей из пластичных материалов ведут по номинальным напряжениям.  [c.22]

Как следует из табл. 72, с увеличением (в алгебраическом смысле) коэффициента асимметрии цикла величина эффективного коэффициента концентрации напряжений уменьшается. Это согласуется с общеизвестным фактом малого влияния местных напряжений на несущую способность деталей из пластичных материалов при статических нагрузках.  [c.637]

Предельные нагрузки по разрушению определяются, если установлена связь между напряжениями, вызывающими разрушение, и соответствующими нагрузками, с учетом возможного перераспределения напряжений за счет пластического деформирования. Ограничение статической несущей способности по разрушению имеет место для деталей из материалов со значительным упрочнением и ограниченной способностью к пластическому деформированию (например, легированных сталей при низком отпуске).  [c.72]

Рассмотрим структуру вероятности безотказной работы элемента первой группы P t). Все факторы, влияющие на этот показатель надежности, могут быть разделены на две категории, К первой категории относятся нормальные эксплуатационные и производственно-технологические факторы (эксплуатационные нагрузки, напряжения, скорости и т. п., возникающие при нормальной работы машины). Несущая способность деталей имеет естественный разброс, соответствующий их качественному изготовлению. В результате взаимодействия этих факторов могут возникнуть отказы из-за разового превыщения нагрузкой несущей способности детали или накопления циклических повреждений, или изнашивания. Между этими видами отказов существует определенная зависимость 1) часто рассматривается один и тот же процесс нагружения, который может вызвать отказы трех типов 2) между характеристиками статической и циклической прочности существует вероятностная связь 3) изменения в детали, вызванные циклическими повреждениями или изнашиванием, могут повлиять на статическую прочность. Попытка учета этих связей приводит к чрезмерному усложнению расчетов, что делает их малоприемлемыми для практических целей [5]. В то же время, как показывает опыт расчетов, возможна оценка надежности деталей в предположении независимости вероятности безотказной работы по этим трем предельным состояниям.  [c.132]

В авторемонтном производстве применяют два способа правки правку статическим нагружением (под прессом) и правку наклепом. Подавляющее большинство деталей правят статическим нагружением в холодном состоянии. При холодной правке в деталях возникают внутренние напряжения, которые при последующей работе деталей могут складываться с напряжениями, возникающими под действием рабочих нагрузок. В результате этого могут появиться вторичные деформации. Для повышения стабильности правки и увеличения несущей способности деталей их после правки подвергают термической обработке. На рис. 4.6 показано влияние температуры нагрева деталей из стали 45 в течение 1 ч на восстановление несущей способности их после правки. Из рис. 4.6 видно, что при нагреве детали до 400 —500 С ее несущая способность восстанавливается до 90%. Такому нагреву можно подвергать лишь детали, термообработка Которых при изготовлении проводилась при температуре не ниже 460— 500° С, например шатуны, балки передних осей и другие детали. Стабилизация правки деталей, подвергаемых закалке ТВЧ (коленчатые валы, распределительные валы), должна проводиться при температуре не выше 180—200° С. Такая стабилизация восстанавливает несущую способность деталей только до 60—70%. Правка, под прессом снижает устЗлостную прочность деталей на 15—20%.  [c.149]


Однако наиболее важную роль играет исходная концентрация напряжения. Более точный метод учета этого влияния заключается в определении несущей способности деталей путем испытаний при статической нагрузке образцов больших размеров с надрезами определенной формы и размеров, при постоянной те.мпературе с определением значения или К.х, при температуре на величину ДТ ниже лшнимальной температуры при которой воз.хюжна эксплуатация детали под нагрузкой. Запас по телшературе ДТ выбирается с учетом запаса энерпп упругой деформации в детали.  [c.329]

Как упоминалось в 1, применяемые в настоящее время в сепа-раторостроении нормативные методы расчета на прочность предусматривают оценку статической несущей способности их элементов на основе определения упругих напряжений при максимальных рабочих нагрузках и выполнение условий отсутствия деформаций, нарушающих нормальную работу сопрягаемых деталей. При этом запасы по пределу текучести, например, для аустенитной стали принимаются равными 2,0и 1,5 соответственно для мембранных напряжений и напряжений в зонах концентрации  [c.130]

Расчет несущей способности. Уверенность инженеров в существовании пластических свойств у используемых ими материалов которые спасают их от последствий незрелости создаваемых ими конструкций и применяемых методов расчета, в действительности представляет собой применение принципа расчета по предельным состояниям, хотя и редко признается таковым. Этот принцип, применимый только к статически нагруженным конструкциям, изготовленным из пластичных материалов, устанавливает предельную несущую способность по нагрузке конструкций как минимальную нагрузку, которой может сопротивляться в некотором поперечном сечении весь объем материала, когда напряжения в нем достигают предела текучести, вместо нагрузки, при которой максимальное напряжение достигает некоторой определенной величины. Ниже этой нагрузки часть материала, сопротивляющёгося нагружению , должна быть упругой, и поэтому деформироваться он может только при малых упругих дафорцациях отсюда следует, что общие перемещения в конструкции должны иметь величину порядка упругих перемещений. С другой стороны, при более высоком уровне нагружения перемещения могут расти без ограничения, пока не наступит разрущение. Несмотря на разумность такого теоретического допущения, очевидно, что действительные величины перемещений будут зависеть от геометрии конструкции. Представляют Ли они существенное ограничение для работоспособности конструкции или нет, зависит от предназначения конструкции для большей части конструкций — имеют значения, но для деталей мащин — зачастую нет. По поводу методов определения несущей способности следовало бы сделать некоторые замечания относительно возможности для пластических деформаций оставаться локальными, прежде чем будет достигнут предел несущей способности и как результат — образование щейки и разрушение ёще до того, как будет достигнут теоретический предел несущей способности.  [c.44]

ДО 60 мкм. Именно эти факторы в сочетании с малой пластичностью поверхностного слоя оказали решающее влияние на сопротивление усталости хвостовиков. Кроме того, следует отметить, что при поверхностном упрочнении деталей из жаропрочных сплавов даже при сравнительно низких температурах (бОО. .. 700° С) имеет место более интенсивное окисление поверхности. Обедненный легирующими элементами поверхностный слой под действием статических и знакопеременных нагрузок растрескивается. В зонах концентрации напряжений эти трещины возникают задолго до полного разрушения детали. Из таких трещин затем образуются усталостные трещины. Как показывают экспериментальные данные, скорость распространения трещин усталости в наклепанном слое значительно выше, чем в ненаклепанном слое с незначительной пластической деформацией. Применение наклепа при ресурсе более 1000 ч может привести к уменьшению несущей способности конструктивного элемента [5].  [c.141]

Повышение несущей способности. Несущую способность болтовых соединений можно значительно повысить рациональным выбором силы затяжки, а также соотношения податливости болтов и стягиваемых деталей (см разд 7) Затяжка, увеличивая среднее напряжение цикла, снижает коэффициент амплитуды а и уменьшает переменную составляющую нагрузки, хотя и за счет повышения статической При достаточно сильнои затяжке нагрузка почти полностью статическая. Для предотвращения релаксации следует снижать напряжения растяжения в стержне болта, смятия на опорных поверхностях, смятия и изгиба в витках резьбы Напряжения в резьбе уменьшают увеличением диаметра резьбы и высоты гайки.  [c.126]


Смотреть страницы где упоминается термин Несущая способность деталей при статических напряжениях : [c.487]    [c.278]    [c.97]    [c.30]    [c.482]    [c.760]   
Справочник машиностроителя Том 3 Изд.3 (1963) -- [ c.486 ]



ПОИСК



Детали Несущая способность при статических

НАПРЯЖЕНИЯ - НЕСУЩАЯ СПОСОБНОСТЬ

Напряжения статические

Несущая при статических напряжениях

Несущая способность

Несущая способность при статических напряжениях

Несущая способность статическая

Ток несущий



© 2025 Mash-xxl.info Реклама на сайте