Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диаграммы сжатия различных материалов

Древесина, являющаяся анизотропным материалом, при сжатии, как и при растяжении, обладает различной прочностью в зависимости от направления сжимающей силы по отношению к направлению волокон. На рис. 113 изображены диаграммы сжатия двух кубиков из древесины одной породы. Кривая 1 иллюстрирует сжатие кубика вдоль волокон, а кривая 2 — поперек волокон.  [c.102]

На рис. 4.6.1, 4.6.2 представлены образцы и диаграммы сжатия для различных материалов.  [c.58]


Опытные значения упругих характеристик материалов трех различных типов приведены в табл. 4.8. Характеристики определяли в диапазоне напряжений, не превышающих 50 % от разрушающих. В указанном диапазоне диаграммы деформирования при растяжении и сжатии этих материалов с достаточной точностью можно считать линейными (см. рис. 4.4—4.7). Разброс значений (см. табл. 4.8) упругих постоянных незначителен.  [c.111]

На рис. 13, а показаны диаграммы сжатия, полученные при испытании различных материалов. Диаграммы смещены от начала координат вдоль оси абсцисс для того, чтобы они взаимно не накладывались.  [c.25]

Рис. 13. а — Диаграммы сжатия / — малоуглеродистой стали, 2 — чугуна, 3 —, дюраля, 4 — алюминия, 5 — дерева, б — Общий вид образцов различных материалов до и после испытания на сжатие I — мягкая сталь, 2 — чугун, 3 — дюраль, 4 — алюминий и 5 — дуб (при сжатии вдоль волокон),  [c.26]

При сжатии образцов дерева получаются резко различные результаты в зависимости от направления сжатия по отношению к волокнам дерево — материал, называемый анизотропным, т. е. обла-даюш,им разными свойствами в разных направлениях. При сжатии дерева вдоль волокон предел прочности оказывается примерно в 10 раз больше, чем при сжатии поперек волокон, а деформация значительно меньше. На рис. 30 показаны диаграммы сжатия деревянного кубика вдоль и поперек волокон. В таблице 3 приведены данные о пределах прочности при растяжении и сжатии важнейших материалов.  [c.54]

Разгрузка фиксируется в случае, когда интенсивность напряжений, вычисленная на текущем шаге, становится меньше текущего предела текучести. Накопление результатов производится на последней итерации шага, если не назначены дополнительные корректирующие итерации. Корректирующая итерация осуществляется после накопления результатов без увеличения нагрузки, поэтому она уточняет уравнения равновесия для новой конфигурации и граничные условия. Одновременно уточняются и уравнения состояния по диаграмме деформирования. Свойства материалов в зависимости от температуры задаются в виде таблиц для определенных фиксированных температур. Для каждого материала назначаются свои температурные узлы. Для промежуточных значений температур свойства вычисляются с помощью линейной или квадратичной интерполяции. Если свойства материала не зависят от температуры, исходная информация сокращается и для конкретного материала производится просто выборка свойств из соответствующей таблицы. Диаграмма деформирования Oi (е ) задается поточечно для различных температур. Интенсивность напряжений для промежуточной температуры и интенсивности деформации вычисляются интерполированием. Следует отметить, что диаграмма деформирования определяется на основании опытов на растяжение или сжатие образцов при соответствующих температурах. При этом полученные результаты должны быть приведены к соответствующим мерам деформации и напряжения.  [c.99]


Диаграммы, аналогичные полученным при растяжении, можно построить для различных материалов и при сжатии и снова определить такие характерные напряжения, как предел пропорциональности, предел текучести и предел прочности. Было обнаружено, что для стали предел пропорциональности и предел текучести одинаковы как при растяжении, так и при сжатии. Разумеется, для многих хрупких материалов характерные напряжения при сжатии гораздо больше, чем при растяжении ).  [c.16]

Для устранения или уменьшения трения предложены различные методы изготовление конических насадок с углом конуса, равным углу трения испытание на сжатие цилиндрических трубчатых образцов с осевыми отверстиями и вогнутыми торцами в виде входящих конических поверхностей с углом а, равным углу трения [21, 26]. Для испытания стали рекомендуется а = 4 6°, высота образца 1—-1,5 диаметра, диаметр отверстия — 0,3 диаметра образца (рис. 15.7). Чем меньше отношение /г/с(, тем ближе весь объем образца к сжимаемым торцам, тем больше влияние трения, тем меньше касательные напряжения, тем выше сопротивление пластической деформации, выраженное в сжимающих напряжениях (рис. 15.8). Именно влиянием трения объясняется очень высокое сопротивление пластической деформации тонких прокладок из свинца и алюминия, которые при большей толщине потекли бы при значительно меньших напряжениях. Этой же причиной объясняется высокое сопротивление пластической деформации мягких подшипниковых сплавов, залитых тонким слоем на стальную основу. Вследствие влияния трения условная диаграмма сжатия (зависимость нагрузки от высоты образца) дает при значительных пластических деформациях очень крутой подъем. Продольное разрушение путем отрыва при сжатии хрупких материалов обычно наблюдается лишь при тщательной смазке на торцах.  [c.45]

Диаграмма напряжений-деформаций для различных материалов при растяжении и сжатии  [c.22]

Измерения и анализ волновых профилей ударного сжатия различных керамических материалов предпринимались в серии работ выполненных в конце 80-х и начале 90-х годов. В частности, измеренные [54 — 56] профили массовой скорости и рассчитанные на их основе диаграммы деформирования в цикле ударного сжатия и разгрузки высококачественных керамик карбида кремния, диборида титана, карбида бора и двуокиси циркония демонстрируют весь спектр возможной реакции хрупких материалов. Диаграмма деформирования карбида кремния, например, имеет вид, типичный для упруго-пластических материалов. С другой стороны, ударное сжатие керамического карбида бора явно сопряжено с растрескиванием и, как следствие, с уменьшением сопротивления сдвигу и дилатансией, которая отчетливо проявляется в тенденции к появлению избыточного объема вещества с приближением к окончанию его разгрузки после ударного сжатия. Поведение диборида титана имеет некоторый промежуточный характер. По-видимому, зарождение трещин в этом материале происходит при напряжениях ниже предела упругости, однако в целом диаграмма деформирования вполне соответствует модели упруго-пластического тела.  [c.107]

Опытные значения упругих характеристик материалов трех различных типов приведены в табл. 9.8. Характеристики определяли в диапазоне напряжений, не превышающих 50% от разрушающих. В указанном диапазоне диаграммы деформирования при растяжении и сжатии этих материалов с достаточной точностью можно  [c.280]

Древесина, являющаяся ортотропным материалом (см. 5),обла дает фи сжатии различной прочностью в зависимости от направления сжимающей силы по отношению к направлению волокон. На фиг. 29 даны диаграммы сжатия для двух деревянных кубиков. Кубик I под-  [c.33]

На рис. 6.3 представлены типичные диаграммы сжатия для различных материалов малоуглеродистой стали (а), чугуна (б), камня (в), дерева при нагружении вдоль волокон (г) и поперек (д).  [c.145]

НИЯ. При больших деформациях диаграммы оказываются различными, прежде всего из-за того, что сжатие сопровождается увеличением площади поперечного сечения образца, следовательно, нагрузка все время растет. Поэтому для пластических материалов нельзя говорить  [c.133]


У некоторых материалов (например, у низкоуглеродистой стали) начальные участки диаграммы растяжения и сжатия подобны н характерные напряжения (Оу , Ог) при растяжении и при сжатии одинаковы, у других (например, у чугуна) они различны. Интересно отметить, что повышение предела упругости при наклепе растяжением понижает предел упругости при сжатии (получается кривая К А"В"С 0"М" вместо ОА В С О N ). Аналогично, при наклепе сжатием понижается предел упругости при растяжении. Это явление получило название эффекта Баушингера.  [c.104]

Этот способ дает несколько большую точность, чем первый, хотя разница между ними невелика, как видно из сравнения формул (6.26) и (6.28). Недостатком обоих этих способов является то, что, как показывают опыты, существует два разных механизма разрушения, первый из которых связан со сдвигом или скольжением слоев, а второй — с их отрывом. С другой стороны, многие материалы имеют различные диаграммы растяжения н сжатия, как это видно, например, на рис. 4.14.  [c.159]

Для изучения механических свойств материалов методом микротвердости при различных видах теплового и силового нагружения разработана установка УМТ-2, позволяющая проводить комплексное исследование характеристик прочности в широком интервале температур [148, 150]. В установке образец с помощью специального механизма подвергается нагружению растяжением — сжатием при различных температурах, в процессе которого производится снятие диаграммы деформирования, определение свойств материалов в микрообъемах методом микротвердости и наблюдение за изменением в структуре посредством оптической системы.  [c.96]

Кинетика диаграмм циклического деформирования в этом случае описывается на основе известных представлений для различных типов материалов за счет изменения величины показателя степени в уравнении (4.18). При этом, например, для частного случая нагружения с равными амплитудами напряжений в полуциклах растяжения и сжатия (см. рис. 4.29) размах напряжений в к-ж полуцикле выразится как  [c.100]

Программа выполняет расчеты диаграмм одноосного растяжения (сжатия) многослойного материала диаграмм деформирования материала при чистом сдвиге диаграмм деформирования при заданном соотношении главных средних напряжений, приложенных к многослойному материалу заданного числа диаграмм деформирования для различных лучей нагружения с целью построения предельной поверхности многослойного материала.  [c.241]

Для оценки свойств по глубине трущихся материалов представляет интерес недавно разработанный метод микромеханических испытаний с регистрацией кинетики непрерывного вдавливания индентора [4. Метод позволяет регистрировать при непрерывном вдавливании индентора диаграмму нагрузка—глубина отпечатка, что качественно аналогично диаграмме напряжение—деформация при растяжении (сжатии) или диаграмме глубина отпечатка — время. Полученные диаграммы дают возможность выявлять кинетические закономерности изменения микропластической деформации на участке внедрения, оценивать упругие и релаксационные свойства материала и другие особенности изменения структуры и свойств материалов при различных условиях поверхностной обработки, процессах трения, резания и т. д. Важная особенность разработанного метода — возможность получения ряда количественных критериев оценки свойств поверхностных слоев. К ним относятся модуль Юнга, гистерезисные потери при разгружении и повторном нагружении, средняя скорость деформации материалов под индентором, активационный объем и эффективная поверхностная энергия. Перечисленные параметры свидетельствуют о перспективности применения непрерывного  [c.88]

Нижняя часть диаграммы предельных напряжений, охватывающая область сжимающих средних напряжений цикла, для пластичных металлов симметрична относительно области растяжения. У хрупких материалов, например чугунов, различно ведущих себя в отношении напряжений растяжения и сжатия, такой симметрии не существует. Линия предельных напряжений у  [c.143]

Существенной особенностью механического поведения полимерных материалов является их различное сопротивление растяжению и сжатию, зависимость механических характеристик от гидростатического давления. Диаграммы деформирования, построенные на основе опытов на растяжение, чистый сдвиг, сжатие или полученные в случае сложного напряженного состояния и приведенные к зависимостям между инвариантными величинами напряжений и деформаций, различаются между собой [ПО, 1121. Эти особенности следует рассматривать как проявление влияния вида напряженного состояния, и они не могут быть учтены классическими моделями, в которых разделяются соотношения между девиаторными величинами и между первыми инвариантами напряжений и деформаций.  [c.193]

На растяжение, сжатие, срез, статический и ударный изгиб испытывались образцы, полностью идентичные испытанным при нормальной температуре. Для определения твердости применялись пластины размером 30X 30X 5 мм, изготовленные вторым способом (см. п. 1 гл. II). Результаты исследований представлены в табл. 151—157. На рис. 74—77 приведены диаграммы деформирования материалов при различных видах нагружения в исследуемом интервале температур ог —60 до 500—700= С.  [c.142]

При сжатии различных материале можно также получить диаграммы, аналогичные таковым при растяжений, и удается установить такие характеристики, как пред пропорциональности, предел. те1 чеСти и предел нрс ности. Мех 1ические Свойства материалов при растяжении н сжатии будут разоб1)аны более подробно ниже (см. часть И).  [c.17]


По заданному коэффициенту запаса прочности и предельным напряжениям Опр (стпр.р пр.с) определяем допускаемое напряжение [а] ([а]р, [а]с). Этот пункт может отсутствовать, если непосредственно в условии задачи заданы допускаемые напряжения. В противном случае должны быть либо даны максимальные предельные напряжения, либо указан материал и то напряжение, которое принимается в качестве максимально допускаемого. Таковыми в зависимости от требований к конструкции могут быть или предел пропорциональности Опц, или предел упругости Gy, или предел текучести Gt, или предел прочности временное сопротивление) Gb, или условный предел текучести oq 2- Эти величины берутся из полученных опытным путем так называемых условных диаграмм растяжения-сжатия , которые приведены на рисунках 1.3 и 1.4 для двух различных материалов, соответственно обладающих площадкой текучести -D, и без нее. От-  [c.12]

В настоящем справочном издании отражены последние достижения в области изучения коррозии и защиты от коррозии. В достаточно сжатой форме описано коррозионное поведение основных металлов в наиболее распространенных средах, антикоррозионные свойства и основные технологические особенности металлических, лакокрасочных, полимерных и силикатных покрытий,, особенности поведения металлических материалов в напряженном состоянии и методика коррозионных испытаний. Как правило, особенности коррозионного поведения различных материалов рассмотрены с учетом специфики их пас-сявацни и с использованием диаграмм электрохимического равновесия — диаграмм Пурбе. В конце каждого раздела авторы справочника приводят библиографический список использованных работ, на каждую из которых в тексте даны соответствующие ссылки. К сожалению, работы советских исследователей использованы мало. Ряд важнейших достижений и открытий в области коррозии и защиты, сделанных в нашей стране и известных за рубежом, в справочнике не упомянут.  [c.4]

Как известно, некоторые техникумы изготовляют своими силами диафильмы или диапозитивы по сопротивлению материалов. Обычно там даны рисунки из учебника. Ясно, что демонстрация диафильма не может заменить рисунка на доске, но при изложении некоторых вопросов все же можно для экономии времени использовать эти виды наглядных пособий. Скажем, можно показать различные диаграммы растяжения и сжатия, пространственные эпюры напряжений при косом изгибе или внецект-ренном осевом нагружении бруса. Все же считаем, что для подобных иллюстраций целесообразнее плакаты. В некоторых случаях диапозитив, особенно цветной, равноценен плакату.  [c.33]

Основные зaкoнo epнo ти, описывающие кинетику циклической и односторонне накапливаемой деформаций основаны на принципе обобщенной диаграммы циклического деформирования, а их форма в виде уравнений (2.10) и (2.18) относится к случаю сим.метричного нагружения. Вместе с этим известно, что изменение асимметрии нагружения приводит к тому, что равные с сим-метричны.м нагружением амплитуды напряжений снижают сопротивление деформированию материала в этих условиях [1]. Если для циклически упрочняющихся материалов этот эффект выражен незначительно и в первом приближении для оценки кинетики де-фор.маций могут быть использованы лишь амплитудные значения действующих напряжений и деформаций, то для циклически стабильных, а тем более разупрочняющихся материалов существенное значение имеют и средние напряжения цикла. В этой связи расчет кинетики деформаций основывается на приведенных значениях напряженихг и деформаций [1], причем последняя в виде ёщ, определяется по диаграмме статического разрушения, как соответствующая напряжению Одр = Пд хст , где х — коэффициент чувствительности к асимметрии, определяемый экспериментально и имеющий различные значения для полуциклов растяжения и сжатия. В этом случае приведенные напряжения для нечетных полуциклов определятся как Одр = о [1 Х1(1 -(- г)/  [c.65]

Общие принципы характеристики деформационно-прочностных свойств полимеров и типичные диаграммы напряжение — деформация были обсуждены в гл. 1. Оценка деформационнопрочностных свойств материала с помощью диаграмм напряжение — деформация является наиболее распространенным видом механических испытаний материалов. Этот метод очень важен с практической точки зрения и получаемые результаты привычны для инженеров. Однако связь результатов таких испытаний с реальным поведением материала в изделии не так проста, как иногда кажется. Так как вязкоупругость полимеров обусловливает высокую чувствительность их механических свойств к различным факторам, диаграммы напряжение — деформация только приближенно предсказывают поведение полимера в изделии. Обычно диаграммы напряжение — деформация или даже только их характерные точки получают для одной температуры и одной скорости деформации. Для набора информации, необходимой для инженера-конструктора, требуется проведение испытаний при нескольких температурах и скоростях деформации, что занимает много времени и связано со значительным расходом материалов. Обычно имеются данные о деформационно-прочностных свойствах при растяжении или изгибе, хотя часто необходимо знать результаты испытаний при сжатии и сдвиге, в том числе не только при одноосном, но и при двухосном нагружении. Поэтому очевидно, что, используя обычно имеющиеся данные о деформационнопрочностных свойствах полимерных материалов, инженер-конструктор должен в значительной мере полагаться на интуицию и опыт, что часто приводит к перестраховке или к ошибкам при конструировании изделий.  [c.152]

Теории предельного состояния стальных деталей обычно исходят из предположения о практически одинаковых диаграммах дефорлшрования при растягивающих и сжимающих нагрузках. Однако такого рода допущен1 е неприемледю в случае хрупких материалов, например чугуна. Более того, закаленная сталь высокой твердости также обнаруживает различные значения предела текучести и предела прочности при растяжении и сжатии. Так, например, для специальной закаленной стали с твердостью HR 60—65 отношение значений предела прочности  [c.483]

Часто различные образцы металлов и сплавов испытывают на сжатие, кручение, срез, изгиб, удар и т. д. Испытания образцов материала на растяжение, кручение и т. д. и построение при этом диаграмм деформация— напряжение обязательно связано с разрушением образцов. Очень часто образцы нельзя разрушать испытанием, так как нужно определить механические свойства заготовок или готовых изделий. В этом случае и, кроме того, для ускорения прочностных испытаний можно получить представление о механических свойствах материалов путем определения их сопротивляемости местной деформации, которые принято называть твердостью материалов. Такая деформация создается вдавливанием в испытуемый образец практически недефор-мируемого тела определенной формы, обычно шарика или алмазной пирамиды под определенной нагрузкой. Испытания на твердость проводятся быстро и не требуют изготовления сложных образцов. Наиболее распространенный метод измерения твердости — способ ее определения по площади отпечатка, который остается после вдавливания в испытуемый материал закаленного стального шарика диаметром от 2,5 до 10 мм при определенной нагрузке (от 62,5 кг до 3000 кг). Этот метод определения твердости называется методом Бринеля.  [c.138]


Смотреть страницы где упоминается термин Диаграммы сжатия различных материалов : [c.39]    [c.167]    [c.204]    [c.39]   
Смотреть главы в:

Сопротивление материалов Изд3  -> Диаграммы сжатия различных материалов



ПОИСК



Диаграмма напряжений-деформаций для различных материалов при растяжении и сжатии

Диаграмма сжатия



© 2025 Mash-xxl.info Реклама на сайте