Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термическая обработка сварных соединений аустенитных сталей

ТЕРМИЧЕСКАЯ ОБРАБОТКА СВАРНЫХ СОЕДИНЕНИЙ АУСТЕНИТНЫХ СТАЛЕЙ  [c.165]

Пути предотвращения восприимчивости металла к межкристаллитной коррозии. Наиболее простым способом является термическая обработка сварных соединений. Аустенитные стали, нагретые до температур 950—1150 С  [c.55]

В связи с тем, что термическая обработка сварных соединений разнородных сталей не приводит к снятию остаточных напряжений, а лишь вызывает их перераспределение, она может рекомендоваться только для улучшения механических свойств различных зон сварного соединения. Поэтому, например, для сварных соединений углеродистой стали с аустенитной, в которых не следует ожидать появления хрупких закаленных околошовных зон в результате сварки, термическую обработку следует исключить.  [c.49]


Термическая обработка сварных соединений перлитных сталей с аустенитными не производится.  [c.167]

Рекомендуемая по условию снятия остаточных напряжений для сварных изделий из аустенитных сталей термообработка (стабилизация) при температурах 800—900° может приводить не к улучшению, а в ряде случаев к ухудшению свойств металла шва и околошовной зоны сварного соединения (п. 4, глава II). Поэтому оптимальным видом термической обработки для сварных соединений аустенитных сталей является аустенизация — закалка с температур 1050—1200° в зависимости от марки стали. Этот режим термической обработки принят в качестве основного для сварных стыков паропроводов и ряда других ответственных конструкций из аустенитных сталей. В случае необходимости снятия остаточных напряжений, созданных в процессе быстрого охлаждения при аустенизации, конструкция может дополнительно подвергаться стабилизации по режиму 800- 900° — 10 час.  [c.92]

Хрупкие разрушения — трещины — могут поразить сварные соединения аустенитных сталей и сплавов еще в процессе сварки. Но они могут появиться и после сварки — во время термической обработки или в процессе эксплуатации сварных соединений. Трещины наблюдаются в металле шва и в околошовной зоне. Несмотря на сходство металлографической картины трещин различного происхождения, причины и усилия, вызвавшие их появление в металле шва или околошовной зоне, могут быть самыми различными.  [c.164]

Вопросы обеспечения требуемой жаропрочности сварных соединений аустенитных сталей и сплавов тесно связаны с выбором оптимальной термической обработки. Многое в этой области еще недостаточно ясно. Можно, однако, сформулировать некоторые общие закономерности, выявившиеся в последние годы.  [c.274]

В заключение следует отметить, что ряд вопросов жаропрочности сварных соединений аустенитных сталей и сплавов, например термической усталости [3] или термостойкости, изучен еще недостаточно. Многое остается неясным и в деле термической обработки так называемых композитных сварных соединений, т, е. сварных изделий из разнородных и разнотипных сталей и сплавов. По какому из компонентов соединения надлежит выбирать термическую обработку Например, по жаропрочному сплаву лопатки ротора или по жаропрочной стали диска этого ротора  [c.274]


Есть еще один вид хрупкого разрушения сварных соединений аустенитных сталей и сплавов — термические трещины. Чтобы уменьшить вероятность появления этих трещин, характерных для дисперсионно-твердеющих жаропрочных сталей и сплавов, нужно уменьшить сварочные напряжения, не допустить, чтобы во время термической обработки они могли превысить предел длительной прочности основного металла. А для этого нужно ослабить или полностью исключить неравномерность сварочного нагрева конструкции, исключить литейную усадку шва. Минимальные сварочные напряжения могут быть созданы при отказе от высокотемпературного нагрева, в пределе —- при отказе от сварки плавлением.  [c.365]

Сварные соединения высоколегированных сталей можно подразделить на несколько групп — высокохромистые (мартенситно-ферритные и фер-ритные), хромоникелевые (аустенитные, аусте-нитно-ферритные), высокопрочные (аустенитно-мартенситные, мартенситностареющие). Назначение термической обработки сварных соединений каждой из перечисленных групп различное. Необходимость проведения термической обработки зависит от состава металла шва.  [c.460]

Сварные соединения такого типа широко используют при изготовлении изделий и объектов различного назначения (табл. 17). Целесообразность их применения обусловлена стремлением к экономии дорогих высоколегированных сталей, необходимостью соединения разных частей и узлов одного и того же объекта, возможностью не проводить термическую обработку сварных соединений сталей с мартенситом в ЗТВ и получением вязких аустенитных швов на ферритных сталях.  [c.421]

Термическая обработка сварных соединений жаропрочных аустенитных сталей имеет и некоторые особенности. В сварных соединениях жаропрочных сталей металл шва, как правило, по составу заметно отличается от состава свариваемой стали (табл. 8.5). В металле шва часто содержится значительно меньше углерода, чем в свариваемой стали. В ЗТВ имеются участки, где по-разному прошли процессы растворения и выделения карбидных и интерметаллидных фаз. Все это приводит к тому, что при последующем длительном эксплуатационном нагреве процессы  [c.172]

Термическая обработка сварных роторов включает в себя высокий отпуск при изготовлении их из перлитных или хромистых сталей или высокотемпературную стабилизацию — для аустенитных роторов. Режим отпуска или стабилизации определяется маркой свариваемой стали и имеет своими задачами снятие сварочных напряжений и устранение хрупких закаленных зон в сварном соединении.  [c.125]

Второй вид составляют операции высокотемпературной термической обработки сварных узлов закалка или нормализация при нагреве до температур 900—1000° С е последующим отпуском для конструкций из сталей перлитного, бейнитного и мартенситного классов и аустенитизация при температурах 1050—1200° С без последующей стабилизации или с ее введением для изделий из аустенитных сталей. Основной их целью при изготовлении сварных конструкций является перекристаллизация созданных сваркой участков с резко ухудшенными свойствами, восстановление которых отпуском невозможно. Такими участками могут быть участки крупного зерна в шве и околошовной зоны сварных соединений, выполненных, например, электрошлаковой сваркой, а также мягкие прослойки в зоне термического влияния при сварке термически упрочняемых сталей. При высокотемпературной термической обработке может также проходить залечивание зародышевых дефектов на границах зерен, созданных в процессе сварки и способствующих проявлению склонности сварных соединений к локальным разрушениям при высоких температурах. Так как с повышением легированности сталей вероятность ухудшения границ зерен при сварке повышается, то и необходимость высокотемпературной обработки для них возрастает. Однако в связи с тем, что проведение ее значительно сложнее операций отпуска, а для крупногабаритных изделий зачастую и невозможно, то к ней обращаются лишь в ограниченном числе случаев, когда отпуск или стабилизация не дают желаемых результатов.  [c.82]


Аустенитные стали и сплавы работают в условиях самых различных температур, нагрузок и сред. Поэтому и к сварным соединениям этих сталей и сплавов предъявляются самые разнообразные требования, в зависимости от назначения сварной конструкции. Получение заданных механических свойств, требуемой жаропрочности, стойкости сварных швов против жидкостной или газовой коррозии определяется, естественно, прежде всего композицией шва, его структурой и термической обработкой. Но очень многое зависит и от технологии и техники сварки.  [c.230]

Возможность применения мартенситностареющих и аустенито-мартенситных сталей определяется стойкостью против общей и межкристаллитной коррозии сварных соединений. При сварке сталей с повышенным содержанием углерода в зоне термического влияния наблюдается образование карбидной сетки, приводящей к межкристаллитной коррозии. Восстановление коррозионной стойкости достигается только после полного цикла термической обработки изделия после сварки. Стали аустенитно-мартенситного класса подвергаются контролю на склонность к межкристаллитной коррозии в соответствии с ГОСТ 6032—84.  [c.46]

Сварные соединения таких сталей при всех толщинах свариваемого металла должны подвергаться термической обработке. Исключение могут составлять только сварные соединения таких сталей, металл шва которых является высоколегированным аустенитным или аустенитно-ферритным (см. п. 2—4).  [c.415]

Размер зерна является нормируемым показателем как для основного металла, так и для сварных соединений. В сталях различают аустенитное, или наследственное, зерно и действительное зерно. Наследственное зерно — это зерно аустенита, которое сталь имеет при нагреве до температуры выше Асз- Аустенитное зерно характеризуется способностью к росту зерна при температуре, незначительно превышающей критическую. Действительное зерно — это фактическое зерно, полученное в стали в результате термической обработки.  [c.60]

Сварные соединения аустенитных паропроводов с толщиной стенки более 20 мм подвергаются термической обработке по режиму аустенизации, т. е. закалке на аустенит. Сварные швы труб из этих сталей с толщиной стенки до 20 мм аустенизации в монтажных условиях подвергать не обязательно. Аустенизация, состоящая в нагреве до 1 100 25°С, выдержке при этой температуре в течение 1 ч и быстром охлаждении, наряду со снятием сварочных напряжений, приводит к повышению пластичности сварного соединения и выравниванию структуры щва и прилегающей к нему зоны. В аустенитно-ферритных швах, выполненных электродами ЦТ-15, ЦТ-16 и др., аустенизация обеспечивает почти полное растворение феррита, что заметно ослабляет или даже полностью исключает процесс образования хрупкой сиг-ма-фазы в процессе последующей эксплуатации.  [c.211]

Прочностные и пластические свойства соединения аустенитной стали, сваренного по оптимальному режиму, несмотря на его структурную неоднородность в состоянии сварки, близки к соответствующим показателям исходного металла (фиг. 93). Это справедливо для всех изученных сталей. Однородную структуру в сварном соединении получают при длительной термической обработке в печи или кратковременным (1—5 мин.) нагревом в сва-  [c.143]

Основное различие в распределении полей остаточных напряжений в соединениях однородных и разнородных сталей разных структурных классов возникает при термической обработке или высокотемпературной эксплуатации (рис. 32.10, г, ). На стадии нагрева и выдержки при максимальной температуре обоих типов соединений остаточные напряжения снимаются за счет прохождения процесса релаксации, при последующем охлаждении однородных соединений условий для возникновения поля собственных напряжений нет, поэтому термическая обработка является эффективным способом их снятия. В отличие от этого при охлаждении соединений из сталей разных структурных классов в них возникают новые внутренние напряжения, условно называемые напряжениями отпуска, обусловленные разностью характеристик термического расширения свариваемых сталей. В соединениях аустенитной стали с перлитной охлаждение после нагрева вызывает в аустенитной стали появление остаточных напряжений растяжения, а в перлитной — уравновешивающих их напряжений сжатия. В сварных соединениях перлитной стали с высокохромистой наоборот в перлитной стали возникают напряжения растяжения, а в высокохромистой сжатия. Аналогичные закономерности распределения остаточных напряжений сохраняются в биметаллических изделиях, выполненных наплавкой, взрывом и другими способами, например, вибрационной обработкой.  [c.434]

Последняя из перечисленных технологическая операция является широко применяемой и высокоэффективной мерой. На 80...90 % снижаются (релаксируются) остаточные сварочные напряжения путем проведения высокого отпуска при температуре 550...750 °С сварных соединений углеродистых и легированных конструкционных сталей. Одновременно обеспечивается повышение свойств сварных соединений и удаление (эвакуация) диффузионно-подвижного водорода из зон высокотемпературного нагрева при сварке. Для сварных соединений аустенитных сталей применяется термическая обработка по режиму аустенизации (закалка на аустенит) с температур 1050... 1100 °С или стабилизирующий отжиг при температуре 840...880 °С.  [c.40]

Э-09Х1МФ. Когда применение подофева свариваемых изделий и последующей термической обработки сварных соединений невозможно или необходима сварка перлитных жаропрочных сталей с аустенитными, допускается использование электродов на никелевой основе.  [c.323]


Переход разрушений в мягкую прослойку с увеличением длительности испытания подтверждается также результатом статистической обработки испытаний большого числа образцов, выполненной В. Рутманом [ПО] и показанной на рис. 46. С увеличением длительности испытания возрастает относительное число разрушений сварных соединений перлитных сталей в шве и зоне термического влияния, а сварных соединений аустенитных сталей — в околошоБной зоне. Хотя приведенные результаты не могут полностью использоваться, так как в них обобщены испытания большой группы сталей, обладающих разной склонностью к разупрочнению в сварных соединениях (причем испытания проводились в широком интервале температур 450—600° С для перлитных 68  [c.68]

Устранение повреждаемости границ зерен околошовной зоны, а также снижение прочности тела зерна могут достигаться выбором рационального режима термической обработки сварных соединений. Для высокожароирочных аустенитных сталей и сплавов заметное повышение надежности их сварных соединений при высоких температурах обеспечивается при переходе к более совершенной металлургической технологии выплавки стали или сплава. Одним из возможных путей повышения надежности при высоких температурах сварных соединений этих материалов является также переход к использованию методов сварки плавлением с минимальным тепловложением, а также к сварке методами давления [57]. Работы в этом напрлвлении находятся, однако, еще в начальной стадии, поэтому уверенного ответа о целесообразности использования тех или иных методов сварки получить пока нельзя.  [c.78]

Совершенно иным является развитие процесса при термической обработке сварного соединения, склонного к растрескиванию. Для металла околошовной зоны в данном случае (рис. 61, б) характерна в условиях ползучести повышенная склонность к меж-зеренному разрушению. Поэтому кривая длительной прочности 1 будет иметь больший наклон, чем аналогичная кривая на рис. 61, а, и пересечение ее с кривой релаксации 3 произойдет сравнительно быстро за время Однако и в этом случае вероятность образования трещин мала, так как обычно и при межзеренном разрушении возможная деформация больше деформации за счет релаксации напряжений (рис. 61, г). Лишь при сварке сплавов повышенной жаропрочности, например дисперсионнотвердеющих никелевых сплавов, степень повреждаемости границ зерен околошовной зоны которых особенно велика, можно ожидать появления трещин при термической обработке и без концентраторов. Растрескивание можно ожидать также и при чрезмерной жесткости свариваемых узлов из аустенитных и теплоустойчивых сталей.  [c.100]

Одним из средств предотвращения коррозионного растрескивания сварных соединений аустенитных сталей служит термическая обработка с целью устранения главной причины, вызывающей коррозионное разрушение, — напря-  [c.285]

Сварные соединения высоколегированных сталей можно подразделить на несколько групп — высокохромистые (мартенситно-ферритные и ферритные), хромоникелевые (аустенитные, аустенитно-ферритные), высокопрочные (аусте-нитно-мартенситные, мартенситностареющие). Назначение термической обработки сварных соединений каждой из перечисленных групп различное. Необходимость проведения термической обработки зависит от состава металла шва. Как правило, термическая обработка не проводится при аустенитных и аустенитно-ферритных швах на неаустенитных сталях (ферритно-мартенситных, высокопрочных).  [c.418]

Методы предотвращения локальных разрушений сварных соединений аустенитных сталей состоят в исключении или ослаблении воздействия факторов, их вызывающих. Высокотемпературная термическая обработка (аустенизация) при 1050—1100° С позволяет практически полностью снять сварочные напряжения (90—95%) и эффект самонаклепа. Возможен отпуск и при более нпзкпх температурах. Однако отпуск при температурах ниже 850—900° С не рекомендуется, так как в этом случае в процессе выдержки снижаются пластические свойства  [c.119]

О роли термической обработки в изменении ударной вязкости в ЗТВ сварных соединений аустенитной стали типа Х16Н6 можно судить по данным табл. 8.3. Термическая обработка заключалась в закалке в воде с 1000 °С, обработка холодом при —70 С и отпуск при 250 °С в течение 1 ч. Термическая обработка улучшает хладостойкость ЗТВ сварных соединений. Необходимо отметить очень высокую вязкость и хладостойкость участка сплавления. По-видимому, это связано с высокой температурой нагрева околошовной зоны, в результате нагрева сталь подвергалась аустенитизации и приобрела высокую вязкость.  [c.170]

Использование технологии сварки плавлением неаустенитных сталей аустенитными швами непрерывно расширяется. В некоторых случаях такая технология является наиболее удобной, а в некоторых практически незаменимой. Особенно удобна технология сварки аустенитными электродами неаустенитных сталей при монтажных работах и ремонте крупных аппаратов, где трудно осуществить термическую обработку сварных соединений после сварки неаустенитными электродами, дающими металл шва, по составу близкий к свариваемой стали. Но даже при сварке не в процессе монтажа, а в цехе использование технологии с образованием аустенитных швов на неаустенитных сталях имеет преимущества перед технологией с образованием сварного соединения со швами, по составу близкими к свариваемой стали. Например, при сварке высокохромистых коррозионно-стойких и жаростойких сталей использование присадочных материалов, дающих высокохромистый металл шва, нерационально из-за его низкой технологической прочности и высокой хрупкости. При сварке среднеуглеродистых низко- и среднелегированных сталей, термически обработанных на высокую прочность (ЗОХГСА, ЗОХГСНА и др.), использование среднеуглеродистых легированных присадочных материалов связано с опасностью получения в шве трещин, не говоря уже о том, что и технология сварки в этом случае осложняется необходимостью подогрева, замедленного охлаждения после сварки и термической обработкой сварных соединений.  [c.308]

В отдельных случаях, когда применение подогрева свариваемых изделий и последующей термической обработки сварных соединений невозможно или необходима сварка перлитных жаропрочных сталей с аустенитными, допускается использование электродов на никелевой основе марки ЦТ-36 или аргонодуговой сварки проволокой Св-08Н60Г8М7Т.  [c.231]

Длительная прочность сварных соединений аустенитных сталей обычно определяется прочностью самой стали. Разрушение сварных образцов, испытываемых на длительную прочность, происходит либо по основному металлу, либо по околошовной зоне. Чувствительность к локальным разрушениям связана с понижением относительной прочности границ зерен за счет выделения по ним различного рода примесей, а также упрочнения тела зерна. Для предотвращения локальных разрушений сварных соединений аустенитных сталей проводят их высокотемпературную термическую обработку (аустенитизацию) с целью снятия сварочных напряжений и эффекта самонаклепа, уменьшают содержание хрома в стали [17, 18]. Весьма стойки против локальных разрушений стали, легированные бором [10], молибденом. Использование сталей, выплавленных на чистой шихте, прошедших электро-шлаковый и, особенно, вакуумнодуговой переплав, значительно повышает стойкость сварных соединений против локальных разрушений и соответственно надежность работы энергетических установок.  [c.454]


Необходимо, однако, отметить, что при весьма высокой жесткости сварного соединения, например, в сварных тройниках высокого давления с толщиной стенки свыше 60 мм и отступлении от заданного режима подогрева, и в сварных соединениях этих сталей ухудшение свойств околошовной зоны может быть настолько велико, что последующий отпуск не даст положительных результатов. В этих случаях перспективным является введение, как и для соединений аустенитных сталей, высокотемпературной обработки (нормализации с последующим отпуском). Ее использование позволяет также устранить мягкие прослойки в разупрочнен-ном участке зоны термического влияния. Следует, однако, отметить, что экспериментальных данных, подверждающих эти реко-  [c.92]

Трещины прн термической обработке возникают также в сварных соединениях теплоустойчивых сталей, в первую очередь легированных ванадием, молибденом и хромом. Одна из подобных зародышевых трещин на наружной поверхности у усиления шва (рис. 57) явилась, как указывалось выше, очагом эксплуатационного разрушения стыка паропровода стали 15Х1М1Ф после 60 тыс. ч эксплуатации при температуре 535—565 С (рис. 57, а). Примеры их появления в турбинных сварных конструкциях изложены в [93], Термическая обработка может приводить к трещинам и в изделиях из аустенитных нержавеющих и жаропрочных сталей, как правило, легированных ниобием или титаном. Наиболее вероятно их возникновение в изделиях большой толщины и сложной конфигурации, особенно при сочетании разиостенных элементов. С повышением жаропрочности сталей и прежде всего с повышением в них содержания ниобия и титана возможность появления указанных трещин возрастает, а сами трещины могут быть настолько большими, что приводят к браку изделия. На рис. 58 показан эскиз ротора газовой турбины, состоящего из двух сваренных между собой дисков из стали X15Н35ВЗТ диаметром 500 мм и привариваемого к ним стакана диаметром 400 мм при калибре швов 30 мм. Ротор после сварки был стабилизирован по режиму 700° С — 15 ч, что привело к появлению в районе околошовной зоны одного из дисков, а также у концентратора в месте перехода от горизонтального к вертикальному участку, большого числа  [c.95]

При использовании сталей, склонных к образованию трещин при термической обработке, следует избегать соединений высокой жесткости, например, типа показанных на рис. 56 вварных толстостенных штуцеров в сосудах. При повышенной жесткости сварных соединений, например, в сварных узлах паропроводов из Сг-Мо-У стали при толщине стенки свыше 20—30 мм или сварных штуцерах с непосредственной сваркой труб любой толщины друг с другом, нужно вводить операцию зачистки наружной поверхности швов до плавного сопряжения с основным металлом перед термической обработкой, чтобы исключить эффект концентрации напряжений. Целесообразно в ряде случаев рассматривать вопрос о возможности перехода к высокотемпературной термической обработке (нормализации для перлитных сталей и аустенитизации для аустенитных). Можно также вводить предварительную облицовку кромок, так как в этом случае жесткость сварного соединения заметно меньше и степень повреждения границ зерен око-лошовной зоны при воздействии ТДЦС также снижается. Для высоколегированных аустенитных сталей и сплавов на никелевой основе повышенной жаропрочности целесообразным бывает использование металла, выплавленного по совершенной металлургической технологии, применение мелкозернистого материала и ряд других методов, детально рассмотренных в главах, посвященных соответствующим типам материалов.  [c.103]

Аварийные последствия локальных разрушений сварных стыков аустенитных паропроводов и узлов из хромомолибденованадиевых сталей при эксплуатации энергетических установок, а также появление трещин в околошовной зоне при термической обработке сварных конструкций из конструкционных и теплоустойчивых сталей, жаропрочных аустенитных сталей и высоконикелевых сплавов вызвали необходимость в проведении больщого комплекса исследований. Они выполнялись в направлениях определения механизма явления, разработки методов испытания и принятия мер по исключению опасности этого вида разрушений. Современные представления о механизме локальных разрушений при эксплуатации и термической обработке изложены в пп. 8 и 12. В данном параграфе приведено описание методов лабораторной оценки склонности сварных соединений к рассматриваемым разрушениям. Виды испытаний конструктивной прочности сварных узлов при высоких температурах изложены в п. 16.  [c.125]

Для получения сварных соединений аустенитных хромоникелевых сталей, стойких против обра-. зования трещин при свар- ( ке, термической обработке и в процессе эксплуатации, принимаются меры металлургического и технологического характера.  [c.135]

Свойства стыков труб поверхностей нагрева зависят в исходном состоянии от композиции сварного шва и основного металла, а также от вида сварки. Это и определяет необходимость проведения термической обработки. Термическая обработка стыков труб из сталей перлитного класса марок 20, 12Х1МФ и аустенитного класса марки 1Х18Н12Т, выполненных электродуговым или газоэлектрическим способом, не требуется, поскольку такие сварные соединения обладают достаточным ресурсом механических и технологических свойств и вполне надежны в эксплуатации. Однако соединения труб из других сталей или стыки, сваренные другими способами, должны обязательно подвергаться термической обработке.  [c.212]

Так же как и в сварных соединениях перлитной сталп с высокохромистой, термическая обработка рассматриваемых конструкци не может привести к снятию остаточных сварочных напряжений, а вызовет лпшь пх перераспределение. Поэтому в сварных соединениях малоуглеродистых сталей с аустенитными термическая обработка после сварки может не производиться. При использовании в сварном соединепии закаливающейся перлитной стали вначале на свариваемых кромках может быть выполнена облицовочная наплавка аустенптнымп электродами и произведен отпуск для снятия закалки в околошовной зоне. Последующая Сварка основного шва может уже производиться без подогрева, и отпадает необходимость в последующем отпуске.  [c.211]

Механические свойства сварных соединений из сталей переходного класса приведены в табл. 34. Следует обратить внимание на два обстоятельства. Прочность сварных швов, не подвергаемых термической обработке, после сварки резко уменьшается лри сравнительно небольшом повышении температуры испытания. Это объясняется тем, что шластическая деформация в процессе испытания при повышенных температурах не сопровождается мартенситным превращением, которое происходит при растяжении при 20°С, а, следовательно, сварные н вы в деталях из сталей переходного класса при этих условиях будут иметь прочность, близкую к прочности аустенитных сталей. Так, например, при сварке без присадки ста-  [c.195]

Невозможность снятия остаточных напряжений при термической обработке сварной разнородной конструкции указывает на бесполезность этой операции для снятия напряжений. Ее применение в данном случае может быть оправдано лишь необходимостью отпуска закаленных участков в швах или в зоне термического влияния сварного соединения. Отпуск для этих целей бывает необходим в сварных соединениях перлитной стали с 12-процентной хромистой, а также в соединениях перлитной стали с аустенитной, когда в качестве малолегированной составляющей используются закаливающиеся при сварке стали.  [c.180]


Смотреть страницы где упоминается термин Термическая обработка сварных соединений аустенитных сталей : [c.91]    [c.216]    [c.57]    [c.377]    [c.311]    [c.388]    [c.724]    [c.463]   
Смотреть главы в:

Металловедение сварки и термическая обработка сварных соединений Издание 2  -> Термическая обработка сварных соединений аустенитных сталей



ПОИСК



Аустенитные сварные швы

Обработка термическая сталей

Сварные соединения аустенитных сталей

Сталь аустенитная

Сталь обработка

Термическая обработка сварных

Термическая обработка сварных соединений



© 2025 Mash-xxl.info Реклама на сайте