Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние химических соединений

Корону можно при определенных условиях наблюдать около острых краев электродов она ограничена относительно узкой областью, прилегающей к электроду. Под воздействием короны и образующихся под ее влиянием химических соединений изоляционные материалы органического происхождения начинают разрушаться, и через некоторое время цор возможен их пробой.  [c.123]

Влияние химических соединений  [c.86]

ВЛИЯНИЕ ХИМИЧЕСКИХ СОЕДИНЕНИЙ  [c.235]

Влияние электронных соединений и фаз внедрения на электропроводность иногда схоже с влиянием химического соединения, т.е. приводит к уменьшению проводимости, но возможна и противоположная картина, когда проводимость возрастает.  [c.235]


Поэтому очистка сплава (соответствующими металлургическими приемами, а также использованием чистой шихты) от вредных примесей, образующих легкоплавкие фазы и эвтектики, — важное средство повышения жаропрочности сплава. Такими вредными примесями являются примеси легкоплавких металлов, например олово, свинец, сурьма, а также сера и примеси других элементов, образующих легкоплавкие эвтектики или соединения, которые располагаются по границам зерен и резко снижают жаропрочность. Некоторые элементы устраняют влияние вредных примесей, вступая с ними в химическое соединение и образуя более тугоплавкие соединения. Таково, например, действие церия в никелевых сплавах.  [c.463]

Эвтектика состоит из 11,7%51 и чередования внедрений обеих фаз. Одновременное влияние Ре и 51 приводит к образованию тройных химических соединений  [c.320]

Влияние химически активной среды. Покрытия, предназначенные для работы в высокотемпературных химических установках, металлургических печах и в других системах, отличающихся наличием агрессивной среды, должны испытываться в условиях, близких к рабочим. Реакции газов с материалом покрытия могут изменять их свойства вследствие образования новых соединений кроме того, эрозионное воздействие может нарушать целостность покрытия. Поэтому необходимо располагать данными тщательно проведенных испытаний, чтобы оценить поведение комбинации покрытие — металл в присутствии газа.  [c.184]

Для дуги с угольными электродами существенное влияние на чувствительность анализа имеет эффект фракционной дистилляции, который приводит к тому, что линии разных элементов появляются в спектре в различные моменты времени испарения вследствие различной летучести химических соединений. На использовании этого эффекта основаны многочисленные методики искусственного повышения чувствительности анализа. Неучет его может повести к заметной потере чувствительности.  [c.30]

Характер влияния металлической примеси на величину удельного сопротивления данного металла зависит от типа образуемого сплава. Различают три типа сплавов механическая смесь, твердый раствор и химическое соединение. В первом случае в сплаве содержатся кристаллы обоих металлов — кристаллы примеси механически смешаны с кристаллами основного металла. Такой сплав получается  [c.248]

Жидкие металлы способны растворять металл, из которого изготовлена аппаратура, и переносить компоненты сплава из горячих зон Б холодные. В такой среде осуществляется химическое взаимодействие между жидким и твердым материалом, в результате которого образуются химические соединения — окислы, нитриды, карбиды и интерметаллические соединения жидкий металл диффундирует в поверхностные слои твердого тела, образуя новый сплав или соединения. Скорость растворения основного металла определяется скоростью отдельных стадий этого процесса, в том числе и скоростью растворения металла в горячих зонах и его отложения в холодных. Скорость коррозии зависит также от температуры, давления и скорости циркуляции жидкого металла. Иногда наблюдается избирательное растворение в жидком металле одного или двух компонентов сплава, сопровождаемое образованием язв или появлением межкри-сталлитной коррозии. Присутствие в жидком металле окислов и нитридов, полученных при соприкосновении его с воздухом или другими веществами, оказывает отрицательное влияние на коррозионную устойчивость металлической конструкции.  [c.89]


Влияние элементов. Для защиты чугуна от коррозии целесообразно вводить в него легирующие элементы в следующих случаях а) когда легирующая добавка образует с основной массой металла твёрдый раствор или химическое соединение, обладающее более высоким потенциалом б) когда легирующая добавка, окисляясь, даёт на поверхности металла сплошную коррозионностойкую плёнку и в) когда легирование препятствует свободному выделению графита.  [c.14]

В табл. 33 приведены сравнительные данные о влиянии характера защиты на общее содержание кислорода и виды его химических соединений в металле шва.  [c.306]

Основное влияние на горение топлива оказывают процессы теплообмена, испарения, термического разложения, смешения, воспламенения и химического соединения топлива с окислителем. Интенсивность этих процессов на начальном участке факела определяется конструкцией горелочных устройств и их компоновкой в топочной камере. При этом конструкция горелочного устройства и параметры факела одной горелки оказывают определяющее влияние на экономичность и устойчивость сжигания топлива практически независимо от компоновки горелок в топочной камере котла.  [c.20]

Интересно, что если предположить существование нескольких изломов на функции ар(Г), то расчет по формуле (5.69) покажет наличие нескольких провалов пластичности. Такая ситуация наблюдается, например, в меди, где сильно сказывается влияние таких элементов, как фосфор, сурьма, висмут, способных на границах образовывать химические соединения. Покажем это.  [c.261]

Характер и степень влияния примесей во многом определяются и химическим составом сплава. Добавление легирующего элемента может значительно сокра-ш,ать предел растворимости примесных элементов в а-фазе титана. Кроме того, легируюш,ие элементы, обладающие большей химической активностью, чем титан, могут образовывать с примесями прочное химическое соединение. И в том и в другом случае отмечается весьма существенное понижение пластичности и вязкости сплава. Примером различной чувствительности сплавов разной легированности к воздействию примесей может служить приведенное в табл. 19 изменение величины ударной вязкости сплавов Ti—6А1—1,5V и Ti—6А1—1,5V—5Zr в зависимости от содержания кремния. Влияние качества структуры полуфабриката, определяемой условиями его термопластической деформации и габаритами, было рассмотрено в предыдущих разделах. В соответствии с изложенным при выборе сплава по справочным данным необходимо учитывать, что приведенные значения механических свойств сплава относятся, как правило, лишь к определенному виду полуфабриката после вполне определенной термической обработки. При изготовлении полуфабриката другого типа и других размеров можно получить комплекс свойств, существенно отличающийся от справочных данных.  [c.65]

Измельчение зерна понижает порог хладноломкости 4о). На рис. 80, б показано влияние величины зерна стали на температурный порог хладноломкости. Чем крупнее зерно, тем выше порог хладноломкости. Для устранения интеркристаллитного (межзеренного) хрупкого разрушения и понижения надо уменьшать скопление примесей в приграничных объемах (сегрегацию без выделения) и образование на границах зерен хрупких фаз (чаще химических соединений), особенно в виде сплошной сетки.  [c.115]

Влияние серы. Сера является вредной примесью в стали. С железом она образует химическое соединение FeS, которое практически нерастворимо в нем в твердом состоянии, но растворимо в жидком металле. Соединение Fe.S образует с железом легкоплавкую эвтектику с температурой плавления 988 " С. Эта эвтектика образуется даже ори очень малом содержании серы. Кристаллизуясь из жидкости по окончании затвердевания, эвтектика преимущественно располагается по границам зерна. При нагреве стали до температуры прокатки или ковки (1000—1200 °С) эвтектика расплавляется, нарушается связь между зернами металла, вследствие чего при деформации стали в местах расположения эвтектики возникают надрывы и трещины. Это явление носит название красноломкости (горячеломкость).  [c.133]

Стальные газопроводы, укладываемые в грунт, должны иметь противокоррозийную изоляцию для защиты их от коррозии, т. е. поверхностного разрушения под влиянием химических соединений, имеющихся в почве, и блуждающих электрических токов, если вблизи газопровода проходит линия трамвая или электропоезда. Наибольшей коррозийностью обладают грунты влажные и содержащие в себе щелочи и кислоты, а также подверженные утечке электрического тока от трамвайных путей. В табл. 2 приводятся типы противокоррозийной изоляции, предусмотренные правилами Госгазтехипспекции.  [c.51]


Водород также растворяется в большинстве металлов. Металлы, способные растворять водород, можно разделить на две группы, К первой группе относятся металлы, не имеющие химических соединений с водородом (железо, никель, кобальт, медьидр.). Конторой группе относятся металлыд(титан, цирконий, ванадий, ниобий, тантал, паладий, редкоземельные элементы и др.), образующие с водородом химические соединения, которые называются гидридами. Водород очень вредная примесь, так как является причиной пор, микро- и макротрещин в шве и в зоне термического влияния.  [c.27]

Различные условия кристаллизации сварочной ванны приводят также к структурной неоднородности отдельных зон сварных соединений /5/, то есть к появлению прослоек, отличающихся своей структурой. Связь между структурой химически однородных сталей и сплавов и их механическими свойствами устанавливается в металловедческих исследованиях. В некоторой степени это может быть перенесено и на сварные соединения, например, для способов сварки без присадочного металла (контактная стьшовая, точечная, шовная и другие способы сварки давлением, когда соединение поверхностей производится с образованием или литого ядра из основного металла, или за счет плавления и деформации торцев). Однако в большинстве случаев для сварных соединений приходится учитывать совместное влияние химической и структурной неоднородности.  [c.14]

Вместе с тем сравнительные исследования режущих свойств модифицированных твердосплавных инструментов выявили высокие потенциальные возможности комплексной обработки на основе износостойких покрытий с использованием пучков заряженных частиц. Имплантация ионами химически активных элементов приводит к существенному повышению износостойкости инструментальных твердых сплавов, что связано с формированием твердых, термоустойчивых химических соединений в поверхностных слоях покрытий. Другие эффекты модификации связаны со снижением пористости покрытий, а также с устранением отрицательного влияния на прочностные характеристики капельной фазы, что подтверждается улучшением режущих свойств твердых сплавов с покрытием после модификации ионным пучком состава Al -N , имеющей целью образование фаз по типу TiAl3. Весьма перспективна комплексная обработка с использованием в качестве износостойкого покрытия нитрида гафния. Однако превышение дозы свыше  [c.230]

Анализ зависимости поляризуемости цинковьгх покрытий от содержания в них железа показывает влияние структурных составляющих сплавов. В однофазной области твердого раствора процесс коррозионного разрушения контролируется скоростями анодной и катодной реакций, и скорость коррозии составляет 0,05 г/(м ч). Наибольшая коррозионная стойкость приходится на область диаграммы железо — цинк, содержащей 8-17 % цинка, что связано, по-видимому, с появлением Г-фазы, являющейся химическим соединением на базе твердого раствора, стехиометрический состав которого соответствует формуле FesZnio- Наличие химического соединения вызьшает увеличение перенапряжения катодного процесса более значительное, чем для чистого цинка. Скорость коррозии сплава при содержании 8,5 % цинка составляет 0,02 г/ (м ч), а при 17,3 % - 0,01 г/ (м ч). Дальнейшее увеличение  [c.55]

Искажения решетки. Существенное влияние на магнитные свойства оказывают искажения строения решетки. Нарушение правильности строения ферромагнитных кристаллов, в первую очередь, происходит из-за примесей. Коэрцитивная сила в железе увёличивается при введении углерода, хрома, вольфрама и кобальта, отрицательное влияние оказывают растворенные в железе азот, кислород и водород,-Искажения решетки вызываются также внутренними напряжениями они могут возникнуть при термической обработке, при выделении из зерен дисперсных частиц химических соединений и т. п.  [c.233]

Протекание химико-термических процессов, таких, как образование пленок окисла или других химических соединений растворение одного из трущихся тел под влиянием механохими-ческих процессов, протекающих в зоне контакта (например, иссле- г дованное акад. В. А. Белым растворение металла полимером (200]), охрупчивание поверхностного слоя под действием атомарного водорода, выделяющегося из смазки или на одного из Tpy-i  [c.233]

В настоящее время имеется несколько гипотез, объясняющих влияние предварительного упрочнения на износоустойчивость. По данным работы [37], предварительное упрочнение уменьшает износ за счет деформации смятия и за счет истирания микронеровностей на контакте. Как считают авторы [43] и [101], предварительное упрочнение пластической деформацией способствует диффузии кислорода воздуха в металле и образованию в нем твердых химических соединений РеО, РегОз, Рсз04 в результате окислительного изнашивания, происходящего с ничтожно малой интенсивностью. Согласно гипотезе [109] упрочнение поверхностного слоя рассматривается как средство повышения жесткости поверхностных слоев и уменьшения взаимного внедрения при механическом и молекулярном взаимодействии. На этот счет существуют и другие теории. Так, например, по мнению А. А. Маталина [64], главным фактором, определяющим износоустойчивость, является величина остаточных напряжений после приработки изделий. Между микротвердостью поверхностного слоя и его износоустойчивостью имеется определенная связь в процессе изнашивания микротвердость поверхностных слоев после приработки стремится к оптимальному значению однако в силу одновременного влияния разнообразных факторов (шероховатость поверхности, напряженное состояние поверхностного слоя и пр.) эта связь имеет только качественный характер и не может быть использована для практических расчетов.  [c.14]


В статье В. Ф. Шатинского и др. 125] отмечается, что нанесенное на изделие покрытие может оказывать как положительное, так и отрицательное влияние на конструктивную прочность. Формирование покрытий приводит к залечиванию поверхностных микротрещин покрытие, служа барьером на пути движущихся дислокаций, зарождающихся в основе, повышает предел текучести сжимающие остаточные напряжения, возникающие в приповерхностных слоях основы и покрытии при его нанесении, вызывают увеличение усталостной прочности детали. Ухудшение механических свойств металлов с покрытиями может происходить в результате образования на межфазной границе покрытие — основа интерметаллических или химических соединений повышенной хрупкости в случае возникновения в поверхностных слоях растягивающих напряжений.  [c.21]

Растворенными веш,ествами вода обогащ,ается в результате контакта с различными горными породами при протекании по руслам рек и при фильтрации в грунте. Характером этих горных пород и степенью растворимости образующих их химических соединений определяется в основном химический, состав воды. В некоторых случаях на состав воды оказывают влияние сточные воды производственных предприятий.  [c.5]

Были предприняты попытки разработать аналитические методы, позволяющие прогнозировать влияние диффузии через поверхность раздела на механические свойства комшоиентов при этом градиенты состава в химическом континууме по нормали к поверхности раздела аппроксимировали с помощью дифференциальных методов [19]. Хотя развитый в работе [19] метод не является достаточно общим, там убедительно показано, что при наличии химически размытой зоны раздела вне зависимости от того, имеются ли в ней химические соединения или нет, композит превращается в многокомпонентное образование, каждый компонент которого вносит свой вклад в свойства композита.  [c.49]

Барий, как и кальций, в железе нерастворим. При высоких температурах он образует с углеродом химическое соединение Ba j. До настоящего времени не были проведены основательные нссле-дования влияния бария на свойства и структуру чугуна. Некоторые исследователи считают, что по воздействию на чугун барий очень лохож на кальций.  [c.79]

Мы изучали поведение углеродных волокон на основе полиак-рилонитрила, покрытых медью и никелем. Покрытия наносили химическим методом, то есть осаждением из растворов солей, при температурах 20 и 80° С для меди и никеля соответственно. Для выбранных нами металлов исключена возможность образования химических соединений при температурах нанесения покрытия [5], а следовательно, и снижение прочностных характеристик углеродных волокон (что подтверждено экспериментально). Поэтому изучалось влияние на свойства металлизированного углеродного волокна температур, близких к технологическим и эксплуатационным. Для этого определяли прочность на разрыв волокон без покрытия после отжига в контакте с металлами. Отжиг проводили в вакууме с давлением 5 Ю мм рт. ст. в течение 24 ч. Предварительно было  [c.129]

Кинетика пластического течения на начальной стадии деформирования и природа поверхностных источников сдвигообразо-вания широко изучались в 30—40-х годах. В результате этих исследований было установлено, что начальные акты пластического течения, как правило, связаны с поверхностными слоями кристалла [55, 56]. Позднее также на основании рентгенографических исследований аналогичный вывод был сделан в работе [57]. В дальнейшем гипотеза о преимущественном пластическом течении в приповерхностных слоях кристалла на начальных стадиях деформирования получила подтверждение электронографическими, поляризационно-оптическими, металлографическими и другими методами исследования. Наиболее сильно влияние поверхностных слоев на общий процесс макроскопической деформации проявляется на монокристаллах металлов и химических соединений в специфических условиях внешней среды (газовой, жидкой, в присутствии поверхностных пленок и т. д.) [54]. Однако апомально  [c.22]

В период научно-технической революции резко возрос объем выброса в атмосферу галогенсодержащих соединений от антропогенных источников. Большое внимание исследователей и оживленную дискуссию вызывает проблема влияния галогенсодержащих соединений на слой озона. Эта проблема изучается Международной комиссией по атмосферному озону (МКАО). Не останавливаясь на значении озонного слоя в защите биосферы от действия ультрафиолетовой радиации солнца, заметим, что продукты химических превращений, протекающих в верхних слоях атмосферы (в тропопаузе и стратосфере), могут иметь стоки в приземные слои атмосферы и увеличивать степень загрязнения воздуха.  [c.15]

Вторая часть справочника содержит данные о влиянии химически активных сред на некоторые физические, главным образом механические свойства материалов. По сравнению с имеющимся рбъемом информации о скорости коррозии количество публикаций по коррозионно-механическим свойствам материалов невелико. Предлагаемая сводка, суммирующая в какой-то мере опыт химической промышленности, является первой в справочной литературе попыткой объединения сведений о склонности сталей и сплавов к коррозионному растрескиванию и о влиянии различных сред на прочность и пластичность металлов, пластмасс и резин. Число сред, представленных в разделе, далеко не исчерпывает номенклатуры важнейших соединений, но все же позволяет получить сведения о таких промышленно важных явлениях, как сульфидное и хлоридное растрескивание сталей, щелочная хрупкость, водородная коррозия и охрупчивание, аммиачное растрескивание медных сплавов, изменение механических свойств неметаллических материалов под действием галогенпроизводных, аммиака, киС лот и т. д.  [c.4]

При поверхностном азотировании стали вследствие насыщения металла азотом с последующей закалкой и образования химических соединений твердость поверхностного слоя возрастает до HR (58-65). При этом, очевидно, особенно важное влияние на износ набивки может оказьшать геометрия микронеровностей. Результаты обработки профилограмм показывают, что шероховатость поверхности после азотирования снижается почти на два класса, что приводит к весьма интенсивному износу материала сальниковой набивки. С уменьшением высоты микронеровностей ресурс работы сальника увеличивается.  [c.85]

Механизм ингибирующего действия органических веществ. Замедле ние скорости коррозии металлов путем введения в агрессивную среду небольших количеств органических веществ — так называемое ингибирование коррозии — вряд ли возможно свести к какой-либо одной причине, хотя первым актом является, ио-видимому, адсорбция ингибиторов на поверхности корродирующего металла, и их результативный эффект будет зависеть от свойств металла, раствора и самих ингибиторов. Адсорбированные частицы ингибитора могут влиять на частные электродные реакции, лежащие в основе процесса коррозии. Они могут механически экранировать часть или всю поверхность металла и отделить его от агрессивной среды, принимать непосредственное участие в электродных реакциях, превращаться в другую форму и образовывать химические соединения с корродирующими металлами. Свойства этих новых форм существования ингибиторов и их влияние на процесс коррозии могут быть иными, чем в случае исходных веществ.  [c.135]


Исследование тепловых эффектов химических процессов во второй пол овине XIX в. (П. Э. М.Берт-ло, X. П. Ю. Томсен, Н. Н. Бекетов и др.) на основе открытого Г. И. Гессом закона постоянства сумм тепла химической реакции привело к созданию термохимии, которая, в свою очередь, оказала большое влияние на формирование-химической термодинамики [16]. Успехи, достигнутые в области химической термодинамики в конце ХТХ в., дали возможность осуществить ряд крупных открытий в области химического синтеза. К ним относится и уже упоминавшийся каталитический синтез аммиака. Разрешить эту важнейшук> научную проблему удалось в результате раскрытия закономерностей, которым подчиняется химическое равновесие. Синтез аммиака, как известно, требует особых термодинамических условий, связанных с резким уменьшением объема получаемого продукта по сравнению с объемом исходных азота и водорода. Общие принципы химического равновесия в зависимости от температуры высказал в 1884 г. Я. Вант-Гофф. В том же году А. Ле Шателье сформулировал общий закон химического равновесия, который затем (1887 г.) с позиций термодинамики был обоснован К. Брауном. Последующие работы принадлежат немецким ученым В. Нерпсту и Ф. Габеру, которые в 1905—1906 гг. сделали необходимые термодинамические расчеты химического равновесия реакции образования аммиака при высоких температурах и давлениях, дав тем самым конкретные рекомендапии для осуществления (1913 г.) промышленного синтеза [17]. Достижения химии стали оказывать всевозрастающее влияние на прогресс химической технологии, области применения которой непрерывно расширялись. Установление закономерностей управления химическими процессами вооружило технологию теорией и методами для более активного-преобразования вещества природы. Если главной задачей технологии предыдущего периода было получение исходных веществ для производства других уже известных химических соединений и продуктов (серная кислота, сода, щелочи и др.), составлявших область основной химической промышленности, то технология конца XIX — начала XX в. решала бо-  [c.142]

Субмикроскоиические и микроскопические продукты взаимодействия типа нитридов, окислов, гидридов, сульфидов и других химических соединений, имеющие большую прочность и высокую температуру плавления, образуются в первый период кристаллизации и во многих случаях благоприятно влияют на формирование мелкокристаллической структуры поверхностного слоя и, следовательно, на нейтрализацию и уменьшение вредного влияния дислокаций и вакансий на свойства отливки. Поскольку в первый период кристаллизации в жидком металле имеются интенсивные потоки, т. е. сильно развита диффузия элементов, в зоне контакта создаются исключительно благоприятные условия для протекания избирательной кристаллизации. В этих условиях центрами кристаллизации могут быть кроме активных участков покрытий тугоплавкие компоненты жидкого металла и химические соединения (MeN, MeS, MeO и др.), образовавшиеся при взаимодействии жидкого металла с покрытием формы.  [c.46]


Смотреть страницы где упоминается термин Влияние химических соединений : [c.5]    [c.314]    [c.15]    [c.47]    [c.271]    [c.167]    [c.238]    [c.120]    [c.100]    [c.29]    [c.53]    [c.263]   
Смотреть главы в:

Материаловедение Технология конструкционных материалов Изд2  -> Влияние химических соединений



ПОИСК



Влияние Соединения

Влияние физико-химических факторов на прочность паяных соединений

Прочность паяных соединений 289 — Влияние давления 307, зазора и частоты химического состава припоя

ХИМИЧЕСКИЕ СОЕДИНЕНИЯ



© 2025 Mash-xxl.info Реклама на сайте