Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приближенное определение частот и форм свободных колебаний

Пластинка, защемленная по контуру. Задача об определении частот и форм свободных колебаний защемленной по контуру прямоугольной пластинки не поддается решению в аналитической с рме и может быть решена лишь приближенными методами. Удобно искать формы собственных колебаний в виде произведения балочны.х функций Рщ (х), соответствующих балке с защемленными концами  [c.377]

Одной из основных задач, возникающих при рассмотрении свободных колебаний прямоугольных пластин, в срединной плоскости которых действуют растягивающие или сжимающие усилия, является определение частот и форм колебаний. При определении частот для изотропных и ортотропных пластин применим метод Бубнова—Галеркина и найдем приближенные значения основной частоты и частот более высокого тона.  [c.338]


Вводные замечания. В ряде случаев исследование колебаний систем как с конечным, так и бесконечным числом степеней свободы описанными выше точными методами затруднительно вследствие большой математической сложности, состоящей либо в том, что дифференциальные уравнения имеют переменные коэффициенты, если, например, балка имеет неравномерное распределение масс и жесткостей вдоль оси, или в том, что порядок характеристического определителя очень высок и сложно не только решить характеристическое уравнение, но даже и составить его, т. е. раскрыть определитель. Встречаются случаи, в которых требуется быстрая, хотя бы и приближенная оценка динамических свойств системы. В перечисленных выше случаях приходится использовать или целесообразно использовать приближенные методы динамического анализа систем, состоящего в определении собственных частот колебаний, в установлении форм свободных колебаний, определении динамических коэффициентов и в проверке динамической прочности. В настоящем параграфе и рассматриваются такие методы.  [c.238]

При проектировании сложных конструкций, подверженных в процессе эксплуатации разнообразным динамическим воздействиям, большой теоретический и практический интерес представляет проблема создания математической модели конструкции, которая адекватно описывает ее жесткостные и массово-инерционные характеристики. Свободные колебания конструкции описываются системой дифференциальных уравнений, а вопрос о выборе коэффициентов в этой системе, от величины которых зависят массово-инерционные и жесткостные характеристики конструкции, может вызвать определенные трудности. В тех случаях, когда рассматриваются простые конструкции или их элементы, суш,ествует соответствие между коэффициентами уравнений и реальными массовыми и геометрическими характеристиками конструкции. Сложнее обстоит дело, когда для расчета больших составных конструкций используются упрощенные модели. Так, например, крыло летательного аппарата при решении задач аэроупругости моделируется балкой или пластиной. Задание исходных данных, т. е. выбор распределения массово-инерционных и жесткостных параметров в таких моделях всегда носит приближенный характер, и, следовательно, расчет на основе таких данных приводит к ошибкам в определении форм и частот колебаний и, как следствие, критической скорости флаттера.  [c.513]


Метод последовательных приближений. Метод заключается в построении последовательности функций, сходящихся к одной из форм свободных колебаний, при этом для каждой найденной формы определяется и частота свободных колебаний. Начальная функция может быть достаточно произвольной, но чем ближе она будет к искомой форме свободных колебаний, тем меньшее число приближений придется вы-полнитъ. Итерационный процесс без наложения дополнительных условий всегда сходится к форме свободных колебаний первого тона. Для нахождения форм свободных колебаний второго и более высоких тонов необходимо при получении каждого следующего приближения вводить орто-гоналйзацию функций ко всем ранее определенным формам свободных колебаний.  [c.335]

Метод Рэлея очень прост и удобен для приближенного определения частоты свободных колебаний первого тона. Сущность метода заключается в том, что в качестве формы свободных колебаний выбирают некоторую функцию ф(х), удовлетворяющую по крайней мере кинематическим граничным условиям и близкую к предполагаемой форме свободных колебаний первого тона. Вьиисляют значения 77о(ф), 7о(ф) и по форме (6,2.32) находят искомую частоту. Метод дает значение частоты с завьипением.  [c.337]

Наряду со свободными колебаниями с одной, двумя и многими степенями сво боды освещены также вынужденные колебания с диссипацией и без нее. Изложена теория параметрических колебаний. Применительно к упругим системам обсуждаются общие свойства собственных частот и собственнь х форм колебаний, точные и приближенные методы их определения. Представлены методы вычисления собственных форм и частот упругих стержней, пластин и оболочек, рассмотрены вопросы  [c.11]

Метод начального параметра. Приближенный метод, удобный для определения форм и частот свободных колебаний неоднородных стержней. Сущность метода заключается в следующем 1) длину стержня разбивают на участки, для каждого из которьЕХ EF = onst и pFj = onst 2) в качестве первого приближения принимают частоту свободных колебаний однородного стержня 3) для каждого /-го участка известно аналитическое решение уравнения (6.2.26)  [c.336]

В статье разработан приближенный метод определения основных частот собственных колебаний пластинок со свободными круговыми вырезами. Внешняя граница пластинок предполагается неаначительно отличающейся oV круговой. Приближенные выражения для радиусов каждой ограничивающей кривой выражены через ряды Фурье. Граничные условия, записанные модифицированными рядами для формы кругового кольца, удовлетворяются приближенным образом на внутреннем и внешнем краях пластинки. Приближенное характеристическое уравнение (либо первого, либо второго порядка апйроксимации) получается в результате удовле творения граничным условиям, а основная частота колебаний определяет ся как первый корень соответствующего характеристического уравнения Для демонстрации решения, основанного на аппроксимации второго по рядка, определены приближенные частоты основной формы колебаний за щемленной эллиптической пластинки, квадратной пластинки с круговым вырезом и круговой пластинки с эксцентрическим круговым вырезом. Для последней также получено решение, основанное на аппроксимации первого порядка для основной формы колебаний.  [c.165]

В статье изложен приближенный метод определения основной частоты колебаний некруговых пластинок со свободными вырезами в пределах второго порядка точности. Используемый метод является модификацией приближенного метода, предложенного Рэлеем для исследования свободных колебаний пластинок с вырезами. Уравнения второго порядка аппроксимации были использованы для получения собственных >застот колебаний защемленной эллиптической пластинки, квадратной пластинки со свободным круговым вырезом при различных значениях его радиуса и эксцентрической кольцевой пластинкц с различными значениями эксцентриситета. Исследование колебаний пластинок с вырезами, имеющими другие граничные кривые, может быть произведено аналогичным образом, при этом необходимо только получить выражение для этих границ в форме рядов Фурье.  [c.178]


В работе изложен приближенный метод определения параметров свободных колебаний цилиндрических оболочек с вырезами, свободными либо подкрепленными шпангоутами и стрингерами. Исследование основано на методе Рэлея — Ритца, в котором при описании изогнутой поверхности оболочки в рядах для перемещений могут быть использованы различные аппроксимирующие функции. В настоящем исследовании для аппроксимации перемещений в осевом направлении используются балочные характеристические функции, а для аппроксимации перемещений в окружном направлении — тригонометрические функции. В результате проведенного исследования установлено, что вырезы в общем приводят к снижению собственных частот колебаний, и этот эффект в наибольшей степени прояв- ляется для основной частоты колебаний. Физически это означает, что вырез уменьшает эффективную жесткость оболочки в большей степени, чем это делает уменьшение эффективной массы. Формы колебаний оболочек с вырезами проявили Сильное взаимодействие с различными волновыми формами, отличающееся в сравнении со сплошной оболочкой. При этом авторы установили возможность существования пиков для амплитуд нормальных перемещений как вблизи, так и вдали от края выреза. Уменьшение низших частот колебаний (обусловленное наличием выреза) для подкрепленной оболочки было меньше, чем для неподкрепленной.  [c.238]

В гл. III после описания модели свободных электронов Зоммерфельда — Хартри обсуждается аппроксимация Хартри — Фока. Затем дается предварительный и, по существу, исторический обзор работ по изучению взаимодействия в плотном электронном газе. Описаны приближения Вигнера, Бома и Пайнса и Гелл-Манна и Бракнера. Элементарным образом вводятся физически важные понятия экранирования и коллективных колебаний (плазмонов). Далее, несколько формально, даются определения динамического форм-фактора и диэлектрической проницаемости, зависящей от частоты и от волнового вектора. Показывается, как с помощью этих величин можно весьма просто вычислить ряд взаимосвязанных характеристик системы электронов. Сюда относятся, в частности, временная функция корреляции для операторов плотности, сечение рассеяния быстрых заряженных частиц, бинарная функция распределения, а также энергия основного состояния. Упор здесь делается на точное определение отклика системы на продольные поля, изменяющиеся как во времени, так и в пространстве. Затем в приближении хаотических фаз находится выражение для диэлектрической проницаемости системы. В этом же приближении вычисляются и все остальные характеристики, перечисленные выше. Заключительный параграф этой главы посвящен рассмотрению взаимодействия между электронами в простых металлах. Показывается, что аппроксимация хаотических фаз здесь неприменима, после чего дается расчет корреляционной энергии, удельной теплоемкости и спиновой восприимчивости щелочных металлов.  [c.29]

Итак, в прикладных проблемах линейные задачи теории стоячих волн представляют основной интерес. Тем не менее на ряд вопросов линейная теория ответить не может. Например, при настройке системы управления важно знать зависимость частоты колебаний от амплитуды. Иногда полезно знать (с высокой степенью точности) структуру волновой поверхности и т. д. Поэтому нелинейная теория представляет определенный интерес для практики. Однако, как мне кажется, наибольший интерес нелинейная теория стоячих волн имеет для математика. В теории установившихся волн проблема существования решений довольно элементарна. В теории стоячих волн дело обстоит значительно сложнее. Первая работа в этой области была сделана Я. И. Секерж-Зеньковичем (1957), который предложил процедуру последовательных приближений, позволяющую рассчитать нелинейные стоячие волны в безграничной жидкости. Эта задача дает ответ о характере нелинейных волн, возникающих в сосуде, ограниченном вертикальными стенками, в предположении, что глубина сосуда бесконечна. В начале пятидесятых годов ту же проблему для сосудов произвольной формы изучал Н. Н. Моисеев. Колеблющаяся жидкость рассматривалась как некоторая система Ляпунова счетного числа степеней свободы. Была развита теория, в рамках которой удалось рассмотреть как свободные, так и вынужденные колебания. Была построена полная аналогия с колебательной системой Ляпунова конечного числа степеней свободы и показано, что для того, чтобы провести все вычисления, достаточно уметь решать соответствующую линейную задачу. Разумеется, развитая теория позволяла изучать только такие волновые процессы, которые близки к тем, которые описываются линейной теорией. (Полное изложение этой теории нелинейных волн можно найти в монографии Н. Н. Моисеева и А. А. Петрова, 1965.)  [c.64]


Смотреть страницы где упоминается термин Приближенное определение частот и форм свободных колебаний : [c.350]    [c.255]   
Смотреть главы в:

Аналитическая механика  -> Приближенное определение частот и форм свободных колебаний



ПОИСК



411 — Колебания свободные — Формы и частоты

411 — Колебания свободные —¦ Формы н частоты и частоты

Колебания свободные

Определение частот и форм колебаний

Определение частот свободных колебаний

Свободные Формы

Свободные колебания — Определени

Формы колебаний

Частота - Определение

Частота колебаний

Частота колебаний (частота)

Частота свободных колебаний



© 2025 Mash-xxl.info Реклама на сайте