Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Давление предельное — Понятие

Давление предельное — Понятие 194  [c.552]

Все реальные газы при высоких температурах и малых давлениях почти полностью подходят под понятие идеальный газ и практически по свойствам не отличаются от него. Состояние идеального газа — это предельное состояние реального газа, когда давление стремится к нулю (р 0).  [c.22]

Для сравнения систем возбуждения циклических нагрузок, а также согласования их с другими звеньями установки используют понятие предельное давление pi, которое характеризует достижение возможного гидростатического давления в его выходной магистрали. Системы возбуждения снабжаются защитными устройствами, предохраняющими от повышения гидростатического давления за предельное значение.  [c.194]


Из диаграммы видно, что работа 1 кг пара в этом случае будет меньше, чем при расширении до предельно низкого давления, и расход пара на получение того же количества электроэнергии будет больше. Зато теплота парообразования отработавшего пара не теряется, а полезно используется. Поэтому для оценки экономичности такого рода установок вводится понятие о степени использования тепла, под которой понимается отношение всего использованного (в виде механической и тепловой энергии) тепла к количеству тепла, затраченному на образование пара.  [c.227]

Число кавитации К можно рассматривать как меру относительной интенсивности восстанавливающей силы, действующей на поток вне присоединенной каверны и заставляющей его возвращаться к направляющей поверхности. Таким образом, свободная поверхность всегда является выпуклой со стороны жидкости. Предельное значение К, при котором восстанавливающая сила отсутствует, достигается там, где давление в жидкости по любому боковому направлению со стороны кавитационной поверхности равно давлению в каверне следовательно, каждая частица жидкости движется по прямой линии и каверна простирается до бесконечности. Поэтому для течения при таком предельном значении К понятие направляющей поверхности не имеет смысла.  [c.330]

В 25 было сформулировано понятие ударного теплового режима и получены условия, обеспечивающие его реализацию. Ударный тепловой режим предполагает настолько быстрый нагрев жидкости, что присутствие в системе готовых центров парообразования не препятствует повышению температуры жидкости до Г Т , при которой происходит интенсивное образование флуктуационных зародышевых пузырьков пара. Огромная масса пузырьков начинает играть основную роль в развитии тепловых и гидродинамических процессов. Само явление будем называть взрывным кипением. Ударный тепловой режим можно осуществить при объемном тепловыделении или при нагревании с поверхности. В гл. 4 и 5 он обсуждался как новый источник информации о частоте спонтанного зародышеобразования в метастабильной жидкости для широкой области давлений и 10 см -сек . Изложенные там экспериментальные результаты по импульсному нагреванию тонкой платиновой проволочки несут отпечаток не только изменяющихся по мере перегрева свойств жидкости, но также процессов роста пузырьков и их взаимодействия с окружающей жидкостью и со стенкой. Указанные процессы имеют важное значение. В данной главе рассмотрим их более подробно. Наряду с кратким обсуждением общих вопросов физики кипения анализируются особенности взрывного кипения как предельного случая.  [c.168]


После некоторого затишья в развитии теории структуры изображения, даваемого оптическими системами, ПОД давлением нужд практики внимание многих ученых ВНОВЬ обратилось к этому вопросу. Исследования в этом направлении дают возможность глубже понять процесс формирования дифракционного изображения и в результате оценить предельные возможности оптики и указать пути дальнейшего усовершенствования оптических приборов. Но оптические приборы работают всегда в сочетании с теми или другими приемниками (глаз, светочувствительный слой фотопластинки, фотоэлемента, катода электрооптического преобразователя и т. д.). В связи с этим представляет большой интерес вопрос о взаимодействии света с приемником и выбор критерия качества изображения, пригодного для характеристики как оптической системы, так и приемника. Желательно, чтобы качество изображения на приемнике всегда можно было оценить, зная в отдельности качество изображения, создаваемого оптической системой, и характеристику приемника. Таким критерием долгое время служило понятие разрешающей способности, но практика показала, что этот критерий не удовлетворяет нуждам практики. Его пришлось значительно усовершенствовать, что оказалось возможным благодаря, с одной стороны, некоторым успехам прикладной математики, а с другой, выбору определенного типа тест-объектов (в виде мир с периодической структурой).  [c.5]

Литье по выплавляемым моделям — Понятие 197 — Последовательность технологических операций 198, 199 — Расчет параметров для стальных отливок 204, 205 Литье под всесторонним газовым давлением — Влияние повышенного газового давления на форму 330 — Время затвердевания отливок 330 слитков 331 — Заполняемость форм 329—331 — Особенности литья сплавов алюминиевых 331, 332 магниевых 332 медных 332, 333 никелевых 334 стали 334, 335 — Природа используемого газа 330 — Способы 328, 329 — Сущность процесса 328 Литье под давлением — Гидродинамические условия удаления газов из полости формы 260 — Движение струи 253, 254 критические скорости ламинарного движения, максимальная скорость заливки 254 расчетное значение устойчивой длины струи 253 — Заполнение формы 254 — 256 — Номенклатура отливок, шероховатость их поверхности 251 — Область применения 249 — Параметры, влияющие на качество отливок 248 — Скорости впуска расплава и прессования 272, 273 — Скорости и давления при дисперсном и турбулентном потоке 256 при ламинарном потоке 257 — Удар впускного потока в стенку формы 254, 255 — Критическая скорость впуска 254, 255 Литье под низким давлением 287, 288 — Организация производства 316, 320 — Подготовка жидкого металла 295 — 297 — Преимущества 288 — Разновидности процесса 320 — Расчет теплосиловых параметров формирования отливки 297—299 — Технико-экономические показатели 316 Литье полунепрерывное вертикальное труб из серого чугуна 557 — Литейные свойства чугуна 557 — Недостатки 557 — Основные и технологические параметры 560 — Предельные усилия срыва и извлечения труб из кристаллизатора 558, 559 — Преимущества 557 — Производительность процесса 560 — Режимы вытягивания заготовки 558, 559 движения кристаллизатора 557 — Тепловые параметры 558 — Технологические основы 557, 558 Литье при магнитогидродинамическом воздействии — Физические основы 423 — 426 Литье с использованием псевдоожиженных  [c.731]

За расчетную схему примем наиболее общий случай течения в вихревой трубе с дополнительным потоком (рис. 4.7). В этом случае режим работы обычной разделительной вихревой трубы представляет собой предельный при О- Используем понятие элементарного объема вращающегося газа dQ. = V nrdr. Условие осевой симметрии обеспечивает отсутствие фадиентов в направлении угловой координаты ф. В сформированном потоке вихревой трубы радиальные скорости пренебрежимо малы. В процессе построения аналитической расчетной цепочки можно использовать принцип суперпозиции, т. е. независимость законов движения по нормальным друг к другу осям координат. Процесс энергообмена в сопловом сечении считаем заверщенным. Определим предельно возможные по разделению энергетические уровни потенциального и вынужденного вихрей. Длина пути перемешивания и фадиент давления определяют предельный эффект подофева приосевого турбулентного моля при его переходе на более высокую радиальную позицию. При этом делается допущение о переходе в сечении, перпендикулярном оси. Осевой снос моля не учитывают. Вязкость и теплопроводность проявляют себя, если присутствуют фадиенты скорости и температуры. Поэтому при формировании свободного вихря вязкость будем учитывать, анализируя процесс затухания окружного момента  [c.191]


Объемные силы, действие которых не проникает сколько-нибудь глубоко внутрь сплошной среды, как, например, силу трения между отдельными слоями среды или силу давления, приложенную в областях контакта между двумя средами, заменяют предельным понятием поверхностных сил, определяемых плот- 10стью распределения их по геометрической поверхности, раз-Траиичивающей области взаимодействующих сред.  [c.105]

Учет коррозионного износа стенок газопроводов, транспортирующих среды, содержащие сероводород, обычно производили путем увеличения толщины стенки на 3 мм для неосушенных сред и на 2 мм для осушенных по сравнению с номинальными толщинами для неагрессивных сред. Однако эти величины не являются обоснованными, так как базируются на понятии максимальная допустимая скорость коррозии в предположении постоянства этой величины во времени, что не соответствует реальным условиям эксплуатации. Действительно, несущая способность стенки трубопровода, подвергаемой воздействию общей коррозии (коррозионное растрескивание в присутствии сероводорода исключается соответствующим выбором состава и термообработки стали и определяется достижением предельного допускаемого значения напряжения, которое для газопромысловых трубопроводов в зависимости от кате гор ийности трубопровода составляет 0,3— 0,5ff ), определяется действующими напряжениями. Динамика изменения напряженного состояния в стенке трубопровода зависит от изменения как силовых нагрузок (давления), так и толщины стенки вследствие ее коррозионного износа. В свою очередь изменение механических напряжений в стенке вызывает изменение скорости коррозионного износа. Неучет реальной динамики этих процессов при назначении толщины стенки может привести либо к занижению запаса толщины на коррозионный износ, либо к неоправданному ее завышению и перерасходу металла.  [c.243]

Анализируя рассмотренные выше построения, следует указать, что метод весовой линии имеет несомненные преимущества по сравнению с другими графическими методами. В первую очередь это простота и точность, так как отпадает двойственность построения, присущая другим методам. Операции с параллельными и пересекающимися векторами (силами) следует простому закону сложения краевых и параллельных составляющих. Вычисление центров масс стержневых систем и механизмов, по методу весовой линии значительно проще, чем по существующим способам. Упрощается также исследование давлений в кинематических парах механизмов и определение реакций опор в стержневых системах. Методом весовой линии весьма просто производится бесполюсное интегрирование и дифференцирование, так как закон распределения сил соответствует закону изменения функции q = f (х). При этом первообразная функция (вес фигуры, заключенной между кривой q = f [х) и координатными осями) представляет собою интеграл. В дискретном анализе понятие бесконечно малая величина" заменяется понятием конечно малая величина со всеми вытекающими отсюда представлениями о производной в конечных разностях и численным интегрированием (вычислением квадратур). Полигоны равновесия узлов в стержневых системах, построенные по методу весовой линии, проще диаграмм Л. Кремоны, так как позволяют вычислять усилие в заданном стержне не прибегая к определению усилий в других стержнях, необходимых для построения диаграмм Кремоны. Графическое решение многочленных линейных уравнений (многоопорные валы и балки, звенья, имеющие форму пластин, и т. д.) производится по опорным весам или коэффициентам при неизвестных. Такой путь наиболее прост и надежен для проверки правильности решения. Впервые в технической литературе. дано графическое решение дифференциальных уравнений для балки переменного сечения на упругом основании и для круглых пластин с отверстиями, аналитическое решение которых требует сложного математического аппарата. В заключение отметим предельно простое решение дифференциальных уравнений теории упругости (в частных производных) указанным методом.  [c.150]

Одна из систем понятий основана на традиционном подходе к расчету и проектированию вакуумных установок. Важнейшими из охватываемых ею характеристик являются для вакуумной камеры — объем, температурное поле, поле десорбционных и диффузионных потоков для вакуумного насоса — предельное остаточное давление, быстрота действия, производительность, вакуум-фактор, коэффициенты использования для соединительных трубопроводов и арматуры — проводимость, температурное поле, поле десорбционных и диффузионных потоков для системы насос—соединительный трубопровод — камера — быстрота откачки, газокинетическая постоянная для системы экспериментальное (технологическое) оборудование— вакуумная камера — температурное поле, топография, парциальный состав и кинетика газовой нагрузки. Учиты-пая широкую распространенность указанных понятий, ирииедем лишь сводку важнейших определений и расчетных соотношений.  [c.41]

Учитывая конечность пластической деформации, СМПД использует логарифмические выражения главных компонентов итоговой деформации, а также при условии монотонности деформации энергетический принцип установления связи между компонентами деформаций и напряжений. Дана формулировка и установлены закономерности при протекании немонотонного процесса формоизменения. В СМПД уточнено понятие о строении рабочей модели твердого тела и принято положение о различии в состоянии тел не по агрегатному признаку, а по способности к релаксации, разработано положение о влиянии положительного и отрицательного гидростатического давления на предельно прочную пластичность, разработаны определения интенсивности результативной деформации и степени деформации, дано четкое определение видов напряженно-деформированного состояния. Формулировку основных законов пластичности СМПД увязывает с положениями современной теории пластического течения твердых тел.  [c.25]


Учебник Ошуркова был первым учебником по техническо термодинамике, изданным в 20-х годах. В этом кратко.м (П7 страниц), но строго научно изложенном учебнике курс технической термодинамики преподносится очень просто, предельно ясно, но одновременно и конспективно. Все изложение проводится в этом учебнике с удивительной легкостью (что вообще было присуще сочинениям проф. Ошуркова) и доходчивостью. В учебнике излагаются общие свойства газов и их смесей, некоторые данные о горении и теплотворных способностях топлив, первый принцип термодинамики, особенности основных процессов, второй принцип, понятие об энтропии, диаграмма Т—з и изображение в ней процессов, общие свойства насыщенных и перегретых паров, диаграммы Т—5 и I—5 для пара, истечение газов и паров из отверстий, процесс дросселирования, определение расхода пара диафрагмой, падение давления в трубопроводах.  [c.230]

Понятие площади фактического контакта было введено И. Б. Кра-гельскжм и Н. Б. Демкиным [674]. Согласно работам [708] площадь контакта S на шероховатой поверхности возрастает с давлением р, достигая при предельном насыщении значений S . Если при р == О площадь контакта равна Sq, то, обозначив ф == Sq/S и ф = S/Sg и учитывая, что изменение ф с р пропорционально свободной поверхности (1 — ф), легко получить  [c.277]

Введем понятия о двух предельных давлениях сыпучего тела активном и пассивном (рис. 10). При небольшом сдвиге подпорной стенки постоянного поперечного сечения АВВ1А1 часть сыпучей массы А ВС, расположенная справа от стенки, будет сползать, оказывая на стенку активное давление (напор), отклоняющееся от нормали на угол трения б вверх. В результате этого воздействия стенка вызовет смещение сыпучей массы, расположенной слева, по плоскости выпирания В С ( валик выпирания А С . Со стороны выпираемой массы грунта (сечение ее АхВ С ) на стенку будет действовать так называемое пассивное давление (отпор), в предельном состоянии отклоняющееся от нормали на угол трения б вниз. При выпирании частицы сыпучего тела смещаются вверх от первоначального положения. Углы наклона 0 и х линий сползания ВС и выпирания В1С1 различны. При одной и той же высоте засыпки пассивное давление в несколько раз больше, чем активное.  [c.19]

Основоположник этой теории К. Кулон (1773) сформулировал основные положения предельного равновесия и применил их к определению давления засыпки, ограниченной горизонтальной плоскостью, на вертикальную подпорную стенку с абсолютно гладкой задней гранью, исходя из допущения о существовании плоской поверхности сползания. Те же положения были использованы впоследствии при нахождении давлений засыпки, ограниченной произвольной поверхностью, на наклонные и ломаные подпорные стенки с шероховатыми задними гранями. Далее В. Ренкин (1857) рассмотрел предельное равновесие бесконечного массива, ограниченного наклонной плоскостью, ввел понятие о поверхностях скольжения и нашел предельное условие, которое П. Е. Паукер применил к оценке устойчивости оснований. Затем В. И. Курдюмов (1889) провел ряд экспериментов о предельном сопротивлении оснований, ясно показавших, что нарушение равновесия происходит путем сползания по некоторым криволинейным поверхностям.  [c.7]

В случае установившегося движения и равны нулю. Решение этих уравнений для потока около тела, у поверхности которого должны удовлетворяться пограничные условия прилипания (u = v = 0), представляет непреодолимые трудности, за исключением отдельных частных случаев. Необходн. .о поэтому найти какой-либо приближенный метод. Понятие об идеальной жидкости основано на том, что вязкость жидкости мала и что членами, содержащими V, можно пренебречь по сравнению с динамическими членами, содержащими квадрат скорости. В другом предельном случае можно рассматривать медленное установившееся движение вязкой жидкости, при котором можно пренебречь динамическими членами по сравнению с членами вязкости, содержащими v. В этом случае левая часть уравнений движения исчезает и, исключив давление и выразив скорость через функцию тока ф, получим единственное уравнение  [c.84]

Непрерывное сохранение работоспособного состояния в течение определенного времени или некоторой наработки называется безотказностью. Понятие надежности по отношению к безотказности является более общим. Свойство сохранять работоспособное состояние до наступления предельного состояния при установленной системе технического обслуживания и ремонта называется долговечностью. Предельное состояние определяется допустимым изменением основных характеристик гидроэлементов, после чего нарушается их работоспособность. Например, предельное состояние для насосов обычно определяется допустимым снижением объемного КПД, для распределительной аппаратуры и гидродвигателей — утечками жидкости, для предохранительных клапанов — изменением давления настройки во всем диапазоне расходов. Отказом считается нарушение работоспособного состояния гидроэлемента.  [c.344]


Смотреть страницы где упоминается термин Давление предельное — Понятие : [c.174]    [c.469]   
Испытательная техника Справочник Книга 2 (1982) -- [ c.194 ]



ПОИСК



Давление предельное

Понятие о давлении



© 2025 Mash-xxl.info Реклама на сайте