Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Решение электромагнитной краевой задачи

Однако строгое решение электромагнитной краевой задачи было найдено до сих пор только в очень малом числе случаев (край, щель, клин, сфера, решетка с синусоидальным профилем ) и т. д.). В действительности математические трудности, возникающие при решении электромагнитных краевых задач, весьма велики и сравнимы с трудностями решения краевых задач в других разделах физики (например, в квантовой теории).  [c.35]

Краевая задача (2.8) —(2.10) представляет задачу на собственные числа, где роль собственного числа играет полная энергия элементарной ячейки w. Поэтому решение задачи су- ществует только для вполне определенного множества значений W. Если это множество дискретно, то говорят о дискретном спектре если множество непрерывно, то говорят, что спектр — сплошной. Оператор W — самосопряженный, поэтому для конечной области V собственные числа да образуют действительное счетное множество. Для механики разрушения наибольший интерес представляет состояние с наинизшей энергией Шо в этом состоянии система может находиться сколь угодно долго. Другие стационарные состояния системы, соответствующие большим W, обычно квазистационарны, так как под действием внешних электромагнитных волн система через определенное конечное время с вероятностью, близкой к единице, переходит в более устойчивое состояние с меньшей энергией. Вблизи точки w = Wo на основании соотношения (2.13) нет других возможных стационарных состояний системы.  [c.30]


В учебнике (2-е изд.— 1978 г.) рассматриваются статистическое обоснование основных понятий и полевых функций механики сплошной среды (МСС), даны теория деформаций, напряжений и процессов деформации и нагружения в окрестности точки тела, законы сохранения и функциональные представления термодинамических функций, теория определяющих соотношений и уравнений состояния, замкнутые системы уравнений МСС и общие постановки краевых задач. Даны общие преобразования квазилинейных уравнений МСС, упрощающие анализ и нахождение их решений. Подробно излагаются теория классических сред, сред со сложными физическими свойствами, описано действие электромагнитного поля, а также дана теория размерности и подобия с примерами ревизионного анализа уравнений МСС.  [c.2]

Волновая оптика рассматривает, чем отличается истинное поведение электромагнитных полей от того, что предсказывает геометрическая оптика. Результаты геометрической оптики основываются на приближении, в котором волны распространяются вдоль определенных траекторий (лучей). В действительности же электромагнитные поля подчиняются волновым уравнениям Гельмгольца, дополненным соответствующими граничными условиями. Решения краевых задач в теории электромагнитного поля ограничены и непрерывны, в то время как в геометрической оптике поля сингулярны на каустиках и разрывны при пересечении границ тени, образуемых препятствиями, разрушающими пучки лучей.  [c.249]

Доля энергии падающей электромагнитной волны, поглощенная в плазме, определится с помощью (2.2.19), (2.2.32) и граничных условий из решения краевой задачи. При этом  [c.87]

Это требует корректной постановки и строгого подхода к решению краевых задач теории электромагнитного поля с учетом потерь. К сожалению, в литературе данному кругу вопросов уделено недостаточно внимания. Часто для расчета потерь применяются методы, не имеющие строгого обоснования, носящие рецептурный характер.  [c.5]

В книге даны основы механики сплошной среды (МСС) физическая трактовка основных понятий и статистическое обоснование законов МСС аксиоматика МСС кинематика и теория внутренних напряжений в средах физические законы — сохранения массы, импульса, энергии и баланса энтропии методы получения замкнутых систем уравнений, основные типы граничных условий и постановки краевых задач МСС. Даны замкнутые системы уравнений для классических сред (газов, жидкостей, упругих тел) и для сред со сложными свойствами (вязко-упругих, нелинейно вязких, упруго- и вязко-пластических, плазмы и др.) при действии электромагнитного поля. Дана теория размерностей и подобия с ревизионным анализом уравнений МСС, критериями подобия и моделирования, с примерами автомодельных решений.  [c.3]


Многогранное развитие современной теории дифракции прежде всего связано с освоением новых диапазонов электромагнитных колебаний н решением ряда прикладных задач науки и техники. С математической точки зрения целью теории дифракции является, во-первых, разработка аналитических и вычислительных методов нахождения решения краевых задач для волновых уравнений, во-вторых, изучение и классификация свойств решений этих задач, отражающих поведение волн в различных условиях. Выбор конкретных задач теории дифракции и появление новых направлений обусловливаются внутренней логикой развития теории и потребностями разделов физики и техники, связанных с волновыми движениями. Трудно перечислить все те многообразные области человеческого знания, в которых основу явлений и процессов составляют периодические структуры и волноведущие системы. Задачи рассеяния волн на периодических структурах в свободном пространстве н неоднородностях в прямоугольных волноводах относятся к числу классических задач теории дифракции. Они являются весьма сложными с математической точки зрения и ввиду большого практического значения для радиофизики сверхвысоких частот, антенной техники, оптики на протяжении многих лет находятся в центре внимания исследователей. В данной работе изучаются и классифицируются явления дифракции волн иа целом ряде периодических структур (т. 1) и волноводных неоднородностей (т. 2), широко применяемых в физике и технике наших дней.  [c.3]

Если исключить краевые задачи и проблемы нелинейной оптики, в основе которых лежит электромагнитная теория, а также исследования по физике излучения, где используется квантовая теория и статистическая физика, то можно сказать, что главные разделы радиооптики базируются на операционном методе решения задач с помощью преобразования Фурье. Метод преобразования Фурье применяли уже Релей и Майкельсон на рубеже нашего века. Однако только современная теория распределений, или обобщенных функций, основанная на трудах Л. Шварца (1950—1951 гг.), может рассматриваться как универсальный инструмент, пригодный не только для анализа более или менее классических задач в теории образования изображения и в теории связи, но и для синтеза новых устройств и систем. Матричная формулировка образования изображения с помощью линз и зеркал существенно упростила математи еские методы расчета линз, особенно при использовании электронной вычислительной машины. Оптические аналоговые корреляторы и вычислительные устройства, созданные на основе новых математических обобщений, начинают дополнять превосходящие их нередко по сложности электронные вычислительные машины. В гл. 5 на нескольких примерах показано, как, пользуясь оптическими методами, можно осуществлять операции умножения и  [c.16]

Ui = onst, то для решения дифференциальных уравнений в частных производных можпо использовать классический способ разделения переменных. Таким ь1етодом фактически и воспользовался Мн для решения упоминавшейся выше задачи о сфере, обладающей конечной проводимостью. В этом случае решение краевой задачи имеет вид бесконечного ряда и его ценность зависит от легкости вычисления необходимых функций, а также от скорости, с которой ряд сходится. Этот метод применялся в различных случаях (помимо задачи со сферой) особенно надо отметить его использование в случае дифракции на круглом диске или отверстии [5]. Следует, однако, замерить, что ли1иь некоторые из этих работ относятся к чисто скалярным задачам типа задач, встречающихся в теории звуковых волн малой амплитуды дальше будет показано, что двумерные задачи в электромагнитной теории принадлежат в основно.м к этому типу, но в других случаях векторная природа электромагнитного поля приводит к дополнительным осложнениям.  [c.514]


Методы нормирования, прогонки с ортогонализацией по Шмидту и направленной ортогонализацни были исследованы в применении к краевой задаче, возникающей при использовании неполного метода. Галёркина [15] для решения задачи о распространении электромагнитных волн типа Нто в плоском волноводе с неоднородным поглощающим заполнением (см. 5.5).  [c.223]

В последние десять — пятнадцать лет у нас в стране и за рубежом широкое развитие получили два прямых метода исследования задач дифракции. Один основан на приближенном решении строгого интегрального уравнения, полученного методами теории потенциала, а другой — на приближенном решении бесконечной системы обыкновенных дифференциальных уравнений с краевыми условиями на двух концах [47, 52, 206, 257, 258, 263 —265]. По эффективности эти методы эквивалентны методу частичных областей, приближенное решение обычно имеет относительную погрешность 2—5 %, а основные результаты в силу больших затрат машинного времени получены пока при 1/Х < 1,5, где I — характерный размер решетки. Построение строгого и эффективного решения задачи дифракции волн на эшелетте стало возможным благодаря использованию идеи частичного обращения оператора задачи. В [25, 58 при реализации этой идеи обращалась часть матричного оператора, соответствующая решетке из наклонных полуплоскостей [82, 83, 11, 112, 262]. Использование процедуры полуобращения в иной форме явилось предпосылкой для появления другого строгого метода [54, 266]. Ключевым моментом в нем является выделение и аналитическое обращение части решения, обеспечивающей правильное поведение поля вблизи ребер. Эффективности этих методов равнозначны, так как при одинаковых затратах машинного времени обеспечивают одинаковую точность окончательных результатов. Отметим, что применение метода работы [54] ограничено и пока не получило широкого развития на решетках другой геометрии, отличных от 90-градусного эшелетта. В то время как метод, развитый в [25, 58], привел к построению эффективных решений задач дифракции электромагнитных волн на эшелетте с несимметричными прямоугольными и острыми зубцами при произвольном падении первичной волны и любых соотношениях между длиной волны и периодом решетки. Результаты данной главы получены методом, приведенным в [25, 58].  [c.142]

Например, последние успехи в достижении высоких параметров оптических дифракционных решеток [2] основываются на понимании того, что распределение световой энергии между различными дифракционными порядками определяется явлениями поляризации и всей электромагнитной теорией в целом, а не простейшим скалярным приближением теории дифракции. Полное и точное решение краевой электромагнитной задачи для оптических решеток было получено совсем недавно в серии работ Строука, Буске, Петита и Хадни (см., например, [2]). Это решение, дополняющее весьма малочисленный список уже решенных краевых электромагнитных задач, было получено методом, предложенным Строуком в 1960 г. [3].  [c.17]

При колебаниях полуплоскости (параллельно линии своего края) возникает дополнительная сила трения, связанная с краевыми эффектами. Задача о движении вязкой жидкости при колебаниях полуплоскости (а также и более общая задача о колебаниях клина с произвольным углом раствора) может быть решена с помощью класса решений уравнения Д/+А2/=0, использованного А. Зоммерфельдом в теории диффракции от клина (см., например, статью М. Лауз Интерференция и диффракция электромагнитных волн в Напс1Ь. (1. Ехрег. РЬуз1к, т. 18, стр. 333, 1928).  [c.113]


Смотреть страницы где упоминается термин Решение электромагнитной краевой задачи : [c.38]    [c.329]   
Смотреть главы в:

Введение в когерентную оптику и голографию  -> Решение электромагнитной краевой задачи



ПОИСК



I краевые

Задача краевая

Задачи краевые - Решении

Краевой решение

Электромагнитные



© 2025 Mash-xxl.info Реклама на сайте