Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Малые ферромагнетики

МАГНЕТИЗМ МАЛЫХ ЧАСТИЦ 4.1. Малые ферромагнетики  [c.314]

Возбуждения значительно меньшей энергии образуются в том случае, когда все спины повертываются лишь частично. Такая спиновая волна схематически изображена на рис. 10.12. Из рисунка видно, что спиновые волны представляют собой колебания относительной ориентации спинов в кристалле. Они сходны с упругими волнами в кристалле (фононами). Спиновые волны также квантованы. Квант энергии спиновой волны получил название магнон. При повышении температуры число магнонов возрастает, а результирующий магнитный момент ферромагнетика соответственно уменьшается. При малой плотности магнонов взаимодействие их друг с другом можно не учитывать и, следовательно, магноны можно считать идеальным газом. Газ магнонов, так же как и газ фононов, подчиняется. статистике Бозе — Эйнштейна. Если известны  [c.340]


Эти соотношения были получены для малой окрестности критической точки при приближении к пей по температуре (х = х), но к ней можно приближаться по любой термодинамической силе (давлению или напряженности поля). Найдем термодинамические величины ферромагнетика как функции магнитного поля х-Н) вдоль критической изотермы Т=Т р, Н- 0). Введем критические показатели для этого случая  [c.253]

Рассмотрим результаты экспериментальных исследований фазовых переходов второго рода. На рис. 3.29, 3.30 представлены экспериментальные данные теплоемкости Ср некоторых ферромагнетиков (Со, Fe) Б области точки Кюри. Для того чтобы зафиксировать значение теплоемкости в непосредственной близости к точке перехода внутри узкой флуктуационной области, необходимо проводить измерения с очень малым температурным шагом. Во многих случаях это условие очень трудно выполнить. Поэтому результаты измерений являются достоверными только на некотором удалении (доли градуса) от точки перехода. При анализе экспериментальных данных обращают на себя внимание два обстоятельства. Во-первых, скачки теплоемкости не выражены резко, поэтому изменение Ср имеет квазинепрерывный характер при прохождении точки фазового превращения. Во-вторых, обнаруживается сходство кривых, выражающих температурную зависимость Ср при фазовых переходах второго и первого рода (во всяком случае для области перехода от низкотемпературной к высокотемпературной фазе.) Это сходство особенно наглядно проявляется, если рассматривать не самую величину теплоемкости, а ее прирост в области фазового пс-ре.хода. В полулогарифмических координатах In Т Аср, [/Т экспериментально определенные точки в области фазовых переходов как второго, так и первого рода при Т Т образуют прямую линию. Причем тангенс угла наклона этой прямой практически равен —Elk, где Е — энергия образования вакансий. Таким образом, в реальном кристалле  [c.256]

В проводящей среде ток смещения несоизмеримо мал по сравнению с током проводимости и им можно пренебречь. В связи с этим уравнения (1-6)—(1-8) упрощаются. При исследовании электромагнитных явлений в проводящей среде уравнение (1-7) более удобно, чем уравнение (1-8). В этом случае наибольший интерес представляет магнитная составляющая электромагнитного поля, через которую выражаются токи, напряжения во всех звеньях рассматриваемой системы и потери на гистерезис в ферромагнетиках.  [c.10]


Объемные заряды можно, видимо, не учитывать в области очень малых значений поля Яо, когда d[i]dH=0, и в области, где первичное поле настолько велико, что ферромагнетик доведен до насыщения и вектор намагниченности / всюду направлен параллельно Яо (т. е. поле дефекта во много раз  [c.80]

При намагничивании ферритов (как и ферромагнетиков) происходит смещение границ между доменами и вращение векторов намагниченности каждого домена. В слабых полях у большинства ферритов с малой анизотропией преобладают процессы смещения границ. Для лёгкого смещения границ доменов необходимо, чтобы энергия закрепления границ бьша минимальной. В этом случае проницаемость феррита будет максимальной. Однородные, совершенные в магнитном отношении чистые образцы ферритов характеризуются высоким значением начальной проницаемости и весьма малой коэрцитивной силой. Такие материалы, называемые магнитомягкими, широко применяются в телефонии и радиочастотной аппаратуре. Основными их характеристиками являются величина начальной проницаемости, ее частотная зависимость (магнитный спектр вещества), а также параметр потерь — тангенс угла магнитных потерь.  [c.38]

НАКАЧКА — процесс возбуждения активной среды лазеров и других квантовых генераторов и усилителей, в результате которого нарушается равновесное распределение микрочастиц среды по их энергетическим уровням НАМАГНИЧЕННОСТЬ <—векторная физическая величина, характеризующая состояние вещества и равная отношению магнитного момента малого объема вещества к величине этого объема насыщения характеризует состояние ферромагнетика, при котором увеличение абсолютного значения напряженности внешнего магнитного поля не ведет к увеличению намагниченности ферромагнетика остаточная определяется намагниченностью, которую имеет ферромагнетик при напряженности внешнего магнитного поля, равной нулю) НАМАГНИЧИВАНИЕ- возрастание намагниченности магнетика при увеличении напряженности магнитного поля НАПОР в гидравлике -линейная величина, выражающая удельную механическую энергию жидкости в данной точке потока  [c.252]

Динамич. магн. восприимчивость ферромагнетика может быть найдена в результате рещения ур-ния (1) при заданных постоянном и переменном А, магн. полях в каждой точке при этом в учёте ур-ний электродинамики и граничных условий нет необходимости. Сделаем следующие допущения 1) намагниченность однородна тогда в правой части ур-ния (2) нужно принимать во внимание только первый член 2) ферромагнетик изотропный и непроводящий, магнитоупругое взаимодействие нё учитывается тогда в F входят только магн. энергия —M Ho + h ) и обменная энергия, к-рую при однородной намагниченности можно записать в виде —(1/2)АЛ/ , где Л — константа обменного взаимодействия ф. поле обменного взаимодействия в ур-ние (1) не войдёт и, i. о., Н = На + к 3) потери энергии не учитываются, т. е. Л = 0 4) рассматривается случай малых амплитуд, т. е.  [c.306]

Из этого соотношения очевидно, что для магнетика произвольной формы рассматриваемым эффектом можно пренебречь только тогда, когда величина я мала по сравнению с единицей (парамагнетики, диамагнетики), для ферромагнетиков пренебрежение этим эффектом может привести к серьезным ошибкам.  [c.47]

Подставляя это значение в (30), получаем уравнение для выходного тока преобразователя. Магнитоупругий преобразователь всегда питают переменным напряжением, ввиду чего он практически необратим. Выходной сигнал находят по формуле, аналогичной (35). Так как значения коэффициента Могут достигать нескольких сотен, преобразователь чувствителен к малым напряжениям. Однако шумы в ферромагнетике и гистерезисные явления ограничивают Минимальные измеряемые напряжения значением порядка 10 Е.  [c.202]

В спиновом клапане с антиферромагнитно-связанными слоями ферромагнетиков намагниченности этих слоев в отсутствие внешнего магнитного поля антипараллельны. Толщина немагнитного слоя (Ru) очень мала, меньше длины свободного пробега электрона, поэтому в рутении электроны практически не рассеиваются. Следовательно, электрон проводимости при протекании тока переходит из одного слоя в другой, с противоположным направлением намагниченности, и вероятность рассеяния электрона должна измениться. В этом случае спиновый клапан обладает повышенным сопротивлением. Если же к многослойному образцу приложить достаточно большое внешнее магнитное поле, то намагниченности ферромагнитных слоев установятся параллельно и сопротивление понизится. Рис. 8.11 показывает относительное изменение электрического сопротивления спинового клапана с приложением магнитного поля.  [c.574]


Основными требованиями к магнитомягким материалам, относящимся к ферромагнетикам, являются низкие значения коэрцитивной силы и высокая магнитная проницаемость, способность намагничиваться до насыщения в слабых полях, малые потери при перемагничивании и на вихревые токи. Для удовлетворения этих требований металл должен обладать гомогенной структурой, быть чистым от примесей и включений и иметь крупнозернистое строение, свободное от внутренних напряжений, вызываемых наклепом.  [c.821]

Минимальное значение температурного коэффициента линейного расширения (1,5 10 1/ С) в интервале температур от -60 до + 100 °С имеет сплав с 36 % никеля - 36Н, называемый инвар. Малое значение температурного коэффициента линейного расширения сплавов инварного типа имеет ферромагнитную природу и связано с большой магнитострикцией, т.е. изменением размеров ферромагнетика при его намагничивании. Размеры изделий инварного сплава определяются двумя составляющими нормальной, зависящей от энергии связи между атомами, и магнитострикционным увеличением размера, вызванным внутренним магнитным полем ферромагнетика. С увеличением температуры размер любого тела растет вследствие ослабления межатомных связей, но в сплавах инварного типа этот рост компенсируется уменьшением магнитострикционной составляющей, поскольку увеличение тепловых колебаний атомов влечет за собой снижение намагниченности, а, следовательно, и магнитострикции.  [c.127]

Дать удовлетворительное объяснение гистерезиспынс эффектам в антп-ферромагнетике очень трудно. Поскольку остаточные моменты очень малы, вполне возможно, что они являются лишь вторичными эффектами, связанными, например, с загрязнениями, присутствующими в кристалле. При доменной структуре гистерезис может быть также обусловлен необратимыми явлениями на границах доменов [128].  [c.521]

Наряду со слабомагнитными телами существует ряд веществ, например ферромагнетики, для которых намагниченность не является линейной функцией поля. Для диамагнетиков характерно, что восприимчивость, как правило, не зависит от температуры, а для парамагнетиков она часто изменяется обратно пропорционально абсолютной температуре. Магнитные свойства атома обусловлены следующими факторами орбитальным движением электроно)в спиновыми эффектами магнетизмом атомного ядра Нейтроны и протоны, составляющие ядро, обладают собственными магнитными моментами. Однако величина магнитного момента нуклона из-за того, что его масса почти в 2000 раз больше массы электрона, пренебрежимо мала по сравнению с магнитным моментом электрона. Вычисление суммарных моментов атомов облегчается тем, что как суммарный орбитальный, так и суммарный спиновый момент полностью застроенных электр(зн-ных оболочек равен нулю. Поэтому следует принимать во внимание лишь электроны, занимающие незаполненные оболочки.  [c.143]

Сплавы на основе rf-элементов. Эти сплавы дают огромное разнообразие сочетаний магнитных свойств, зависящих, как правило, от механической и терыомагнитной обработки. Это обеспечивает их широкое применение. В этом пункте кроме данных о хорошо изученных и используемых в технике сплавах на основе Fe, Со и Ni (табл. 27.7, 27.8, 27.12 и рис. 27.37— 27.54) приведены сведения о гейслеровых сплавах (табл. 27.9), некоторых интерметаллидах (табл. 27.11) и слабых зонных ферромагнетиках (табл. 27.10). В последних малая спонтанная намагниченность (и<це) возникает в результате упорядочения спинов электронов проводимости.  [c.624]

Намагничивание ферромагнетика сопровождается ма-гнитострикционным эффектом. Изменение магнитострик-ции Я для поликристаллических железа, никеля и кобальта в зависимости от намагниченности 4nyj приведено на рис. 43. Наблюдающаяся для никеля и кобальта отрицательная величина магнитострикции обусловлена ее отрицательным значением по всем главным направлениям в монокристаллах. Магнитострикция железа положительна в малых и средних полях 1,6—1,7 тл (16—17) X X 10 гс вследствие легкости намагничивания до насыщения в направлении [Ю0, а в более сильных полях, когда основное значение приобретает намагничивание по осям трудного намагничивания [НО] и [111], магнитострикция становится отрицательной.  [c.64]

Магнитные свойства и строение вещества. Как известно электрон обладает спиновым и орбитальным магнитными моментами. Геометрически складываясь моменты электронов создают результирующий магнитный момент атома М. Суммарный магнитный момент в единице объема, именуемый намагниченностью J, когда вещество не было намагничено и внешнее поле отсутствует, равняется нулю. Под воздействием магнитного иоля со средней напряженностью внутри тела, равной Н, намагниченность J = %Н, где х— магнитная восприимчивость. Намагниченность определяет величину магнитной индукции В = В + + %Н. Магнитные свойства вещества характеризует также относительная магнитная проницаемость х = 1 -10 гн м — магнитная постоянная вакуума. В зависимости от величины и знака магнитной восприимчивости вещества могут быть диамагнитные (Х<0), парамагнитные и ферромагнитные (х>>0). Рассмотрим две последние группы веществ. В парамагнитных веществах у атомов имеются магнитные моменты, однако иод влиянием теплового движения эти моменты располагаются статистически беспорядочно вдоль магнитного поля удается ориентировать лишь примерно одну десятитысячную процента всех спинов. В результате магнитная восприимчивость X мало отличается от нуля, а магнитная проницаемость парамагнитных материалов немногим больше единицы. К парамагнитным принадлежат некоторые переходные металлы, а также щелочные и щелочно-земельные металлы. Ферромагнитные материалы обладают весьма большой магнитной восприимчивостью, может достигать значений порядка 10 , после снятия поля сохраняется остаточная намагниченность. Ферромагнитные свойства при нагревании наблюдаются лишь до некоторой температуры 0, отвечающей точке Кюри — переходу нз ферромагнитного в парамагнитное состояние. Значение 0 для железа 769° С, для кобальта 1120° С, для никеля 358 С. При температурах Т G в отсутствие внешнего поля ферромагнетик состоит из микроскопических областей — доменов, самопроиз-  [c.226]


В работе проведены исследования изменения эффективного значения выходного сигнала от напряженности постоянного магнитного поля и амплитуды циклических напряжений при симметричном цикле растяжение — сжатие. Результаты, полученные на низкоуглеродистой стали Э12, представлены на рис. 3. Кривая 1 (случай очень малой амплитуды циклических напряжений) представляет собой, согласно (12), как легко можно убедиться из рис. 2, кривую изменения дВ1до от поля при Остах = 0, т. е. тангенс угла наклона касательной к кривым, представленным на рис. 2 в точке о = 0. Сравнение кривой 1 на рис. 3 с кривой магнитострикции также показывает, что они связаны термодинамическим соотношением (1). Имеющиеся два максимума на кривой 1 (рис. 3) расположены там, где производная от магнитострикции по полю имеет максимальное абсолютное значение. При электромагнитоакустическом методе возбуждения и приема ультразвука, как известно, кроме механизма пондермоторного взаимодействия в ферромагнетиках существенный вклад вносят магнитострикция (при возбуждении) и магнитоупругий эффект (при приеме ультразвука). Амплитуда ультразвукового сигнала, обусловленная вкладом только последних двух явлений, должна изменяться с полем, согласно (1) и (12), так же, как и кривые на рис. 3, т. е. иметь два максимума.  [c.130]

Ферромагнитный кристалл состоит из большого числа очень малых областей — доменов, границы которых не совпадают с границами отдельных кристаллов2. Каждый домен спонтанно (самопроизвольно) намагничен до насыщения, но магнитные моменты отдельных доменов направлены различно. При отсутствии внешнего магнитного поля полный магнитный момент ферромагнетика равен пулю.  [c.96]

По вопросу о влиянип напряжения на демпфирующую способность материалов существуют различные точки зрения. Одни исследователи считают, что напряжение влияет на демпфирующую способность, другие исследователи придерживаются противоположных взглядов. Такое положение объясняется тем, что согласно вышеизложенному рассеяние энергии колебаний в материале зависит от причин, проявляющихся по-разному в зависимости от различных условий. При сравнительно высоких напряжениях (как, например, у лопаток турбин), возникает местная пластическая деформация, протекающая в отдельных зернах. Наряду с этим для ферромагнитных материалов на их де.мпфирующую способность влияет ферромагнитное состояние материала, в особенности магнитомеханический гистерезис (смещение границ самопроизвольно намагничивающихся ферромагнетиков— доменов ). Рассеяние энергии колебаний, обусловленное двумя указанными факторами, почти не зависит от частоты и увеличивается с ростом амплитуды напряжения. При малых же напряжениях влияние локальной пластической деформации и ферромагнитных свойств слабо проявляется. Здесь имеют решающее значение диффузионный п термоунругий эффекты. Рассеяние энергии колебаний, обусловленное этими процессами, зависит от частоты и почти не зависит от амплитуды колебаний. Многочисленные экспериментальные исследования показали, что внутреннее тренне при сравнительно больших напряжениях зависит от амплитуды.  [c.104]

МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ, величина, характеризующая связь намагниченности вещества с магнитным ппле.к в атом веществе. М, в, х в статич. полях равна отнохненню намагниченности вещества М к напряжённости Я намагничивающего поля к — величина безразмерная. М. в., рассчитанная на 1 кг (или 1 г) вещества, наз. удельной (у.уд -л/р, где р — плотность вещества), а М. в. одного моля — м о-л я р н о ii (или атомной) у =Худ-т, где т — молекулярная масса вещества. С магнитной проницаемостью М. в. D статнч. полях (статич. М. в.) связана соотношениями ) = 1 + 4як (в ед. СГС), (,1 = 1+и (в ед. СИ), М. в. может быть как положительной, так и отрицательной. Отрицательной М. в. обладают диамагнетики (ДМ), они намагничиваются против поля ноложитель-Пой — парамагнетики (ПМ) и ферромагнетики. (ФМ), они намагничиваются по нолю. М. в. ДМ и ПМ мала по абс. величине —10 ), она слабо зависит от Н и то лишь в области очень сильных полей (и низких темп-р). Значения Й1. в. си. в табл.  [c.649]

В области парапроцесса в кубич. ферромагнетиках М. проявляется в изменении объёма (объёмная М.), иногда её наз. обменной М., поскольку она обусловлена изменением обменного взаимодействия и обычно велика вблизи Нюри точки. Здесь её зависимость от Я может быть рассчитана по феноменологич, ф-лам, вытекающим из термодинамич. теории фазовых переходов Ландау или теории молекулярного поля. Вдали от точки Кюри для большинства ферромагнетиков М. парапроцесса мала. Однако в т. и. зонных ферромагнетиках (см. Зонный магнетизм) она очень велика, даже при  [c.11]

МАГНОН — квазичастица, соответствующая кванту спиновых волн в магнитоупорядоченных системах. М. по отношению к спиновым колебаниям играет ту же роль, что и фонон — к колебаниям кристаллической решётки. Энергетич. спектр М. имеет вид if = Йт(к), где ш(к) — закон дисперсии или зависимость частоты спиновых волн от их квазиволнового вектора к, квазиимпульс М. р = Йк. Время жизни М. определяется затуханием спиновых волн, и только в случае слабого затухания можно говорить о М. как о хорошо выра женньгх квазичастицах. М. являются бозонами. В тепловом равновесии химический потенциал М. равен о, что и определяет зависимость числа М. в системе от темп-ры. Когда число М. в системе мало, наир, при низких темп-рах, диссипативные я ки-нетич. процессы в магн. подсистеме (напр., магн. релаксация, спиновая диффузия) удобно формулировать в рамках теории рассеяния для столкновений М. друг с друго-М II др. квазичастицами твёрдого тела. При этом магн. динамику системы можно определить на основе кинетич. ур-ния Больцмана для ф-цни распределения М. В ферромагнетиках М. иногда паз. ф е р р о мar-н о н а м и.  [c.23]

Среди уникальных физ. свойств Н. к. выделяется их исключительно высокая механич. прочность, превышающая прочность массивных монокристаллов в 10 —10 раз и приближающаяся к теоретической. Здесь проявляется, в частности, размерный эффект прочность Н. к. резко возрастает при их диам. 5 мкм (рис. 4). Это объясняется тем, что дри таких диаметрах Н. к., как правило, не содержат дислокаций и имеют весьма совершенную поверхность. По этой же причине, благодаря меньшему рассеянию носителей заряда на дефектах и поверхностях, электросопротивление Н. к. относительно мало. Особенности Н. к. состоят также в том, что Н. к. ферромагнетиков и сегнетоэлектриков, как правило, представляют собой монодомеаы.  [c.357]

ПАРАПРОЦЁСС истинное намагничивание) — возрастание во внеш. магн. поле Н абс. величины намагниченности М на завершающем этапе намагничивания ферро- и ферримагнетиков после процессов смещения и вращения ), П. обусловлен ориентацией в поле Н. элементарных носителей магнетизма спиновых и орбитальных магн, моментов атомов или ионов), остававшихся неупорядоченными вследствие дезорганизующего действия теплового движения. На этапе П. намагниченность М под действием внеш. поля стремится приблизиться к величине абс. насыщения Мд, т. е. к намагниченности, к-рую имел бы ферри- или ферромагнетик при Т— ОК. П. в большинстве случаев даёт малый прирост намагниченности, поэтому практически процесс намагничивания считают законченным при достижении техн. насыщения. Вблизи точки Кюри, где роль процессов смещения и вращения уменьшается, а П., наоборот, увеличивается вследствие увеличения числа магн. моментов атомов, разупорядоченных возрастающим тепловым движением), он почти полностью определяет характер намагничивания ферро- и ферримагнетиков.  [c.545]

Ниже критич. темп-ры Т , (наир., Кюри точка для ферромагнетика или Нееля точки для антиферромагнетика) динамика намагниченности носит преимущественно не диффузионный, а волновой характер (см. Спиновые волны). Однако в условиях сильного затухания и малого времени жизни магпонов (Т близко к Т ) волновая динамика намагниченности сменяется диффузионной, что проявляется, в частности, в виде т. н. центрального (квазиупругого) пика в сечении критнч, магн, рассеяния нейтронов. Выше критич. темп-ры С. д. становится основным механизмом пространственного выравнивания неоднородной намагниченности. Особенности С. д. в парамагнитной области (Т > Г ) магнитоупорядоченных веществ по сравнению со С. д. в обычных парамагнетиках проявляется в критическом замедлении (аномальное возрастание вблизи времён магнитной релаксации). Аналогичными свойствами обладают н др. кинетич. и резонансные характеристики (напр., затухание ультразвука в магнетиках, ширина линии ЭПР и др.).  [c.632]


Рассмотрение вынужденных колебаний показывает, что ферромагн. тип колебаний возбуждается внеш. перем. магн. полем с круговой поляризацией и правым вращением и в области малых полей и низких частот магн. восприимчивость имеет такой же вид, как для ферромагнетика с теми же эфф. параметрами. Эта эквивалентность сохраняется и при учёте формы образца, в частности для резонансных частот и компонент тензора внеш. восприимчивости мaJЮГO эллипсоида. Сохраняется она и при учёте анизотропии и при учёте потерь. Ширина кривой Ф, р, для ферромагн. типа колебаний  [c.291]

Внды доменных структур в ферромагнетиках. В общем случае форма Ф. д. и вид ДС в целом на поверхности и внутри кристалла отличаются друг от друга. В связи с этим различают поверхностную (часто замыкающую) и внутреннюю ДС. Как правило, в достаточно массивных образцах (с размерами Z-, значительно превосходящими размеры доменов D) поверхностная структура оказывается более сложной, чем внутренняя. В пластинах малых толщин L D) ДС на поверхности и внутри образца может быть одинаковой. В этом случае говорят о сквозной ДС.  [c.302]

Рк. 6. Доменная структура и частбты ферромагнитного резонанса к малой сфере из кубического ферромагнетика при К, <0 ( 1—первая константа анизотропии).  [c.309]

Шум 1 jf свя зывают с наличием в реальных твёрдых телах той или иной неупорядоченности и связанного с ней чрезвычайно широкого спектра (иерархии) времён релаксации т. Такой широкий спектр т и требуемая для получения закона S (/) с/О 1 // ф-цня распределения т возникают, если т экспоненциально зависит от параметра (энергии активации в случае активац. переходов между состояниями системы, туннельного показателя в случае туннельных переходов), ф-ция распределения к-рого более или менее постоянна в широких пределах изменения этого параметра. То, что шум 1 if обусловлен суперпозицией процессов с разл. временами релаксации, продемонстрировано на опыте в субмикронных МДП-транзисторах (см. Полевой транзистор), в к-рых имеется одна активная ловушка для носителей тока (или две ловушки), спектральная плотность флуктуаций сопротивления канала имеет лоренцевский профиль с одним т (или соответственно два таких профиля с двумя различными т), но при увеличении размеров транзистора и числа ловушек спектральная Ллотность приближается к I //. Магн. шум (флуктуации намагниченности) со спектральной плотностью I //, наблюдаемый в спиновых стёклах и аморфных ферромагнетиках (см. Аморфные магнетики), соответствует наличию в них (и известной из др. опытов) обширной иерархии высот барьеров (энергий активации), разделяющих метастабильные состояния, между к-рыми каждая такая система соверииет переходы в процессе релаксации и теплового движения. В тех случаях, когда механизм шума 1 // понятен (как в спиновых стёклах и неупорядоченных средах с двухуровневыми туннельными системами), мин. его частота (обратное наибольшее х) столь мала (напр., меньше обратного времени существования Вселенной), что попытки её измерения не имеют смысла. Механизмы шума 1 // в объёме полупроводников пока достоверно не установлены, хотя в литературе предложен ряд теорий.  [c.325]

Магнитомягкими материалами называются ферромагнетики, егко (в малых магнитных полях) намагничивающиеся и перемагничи-ающиеся, т. е. обладающие высокой магнитной проницаемостью р, и изкой коэрцитивной силой Я(,. Количественным критерием отнесения )ерромагнетика к магнитомягкому материалу является условие малой ко-рцитивной силы /Я(,<4кА/м (50 Э).  [c.537]

В кристаллах ферромагнетика, исключая сплавы инварного типа, магнитострикция, возникшая из-за внутреннего поля, не обнаруживается, так как объемная магнитострикция в них мала, а линейная — ком-пейсируется деформацией доменов в различных направлениях. В сплавах же инварного типа размеры ферромагнетика оказываются увеличенными, так как в них велика объемная составляющая магнитострикции.  [c.561]

У С. 8 сильно изменяется с изменением напряженности поля, подобно магнитной проницаемости ферромагнетиков. С. роднит с ферромагнетиками и гистерезисная петля зависимости заряда от приложенного к обкладкам сегнетоконденсатора напряжения, аналогичная кривой пере-магничивания. Время установления поляризации в сегнетоэлектрич. области темп-р заметно больше, чем при др. темп-рах, и в сильной степени зависит от напряженности поля. Вследствие этих аналогий свойств с ферромагнетиками С. за рубежом нередко называют ферроэлектриками. Насыщение поляризации наступает при почти полной ориентации диполь-ных моментов в соответствии с полем. При возникновении спонтанной поляризации в точке Кюри, а также при изменении внешнего электрич. поля наблюдается деформация образца — электрострикция. Поляризованные С. в сегнетоэлектрич. области темп-р являются пьезоэлектриками. Потери С. обусловлены как токами утечки, так и электрострикционными деформациями. Выше или ниже сегнетоэлектрич. области вещество ведет себя как обычный диэлектрик— исчезает доменная структура и зависимость е от Е. Темп-ра перехода из сегнетоэлектрич. в несегнетоэлектрич. состояние наз. точкой Кюри (6). В точке Кюри осуществляется переход из одной кристаллография. модификации вещества в другую. Для точки Кюри характерен максимум в температурном ходе диэлектрич. проницаемости. Ввиду низкой механич. прочности, малого температурного интервала пьезосвойств, плохой влагостойкости и др. недостатков применение сегнетовой соли в качестве С. крайне ограничено. В основном применяется сегнетокерамика (см. Керамические радиотехнические материалы), ],ля к-рой характерна достаточная механич. прочность, тепло- и влагостойкость, возможность широкого изменения св-в в зависимости от состава и технология, режима получения материала. Диэлектрич. проницаемость е порядка 400—20 ООО может мало или весьма резко изменяться с изменением напряженности поля и темп-ры. Она резко снижается при частотах выше 10 гц. Тангенс угла диэлектрич. потерь порядка (20 н- 2000)-10 , номере приближения к точке Кюри уменьшается. Он также зависит от напряженности поля. Электрич. прочность пр=2—6 кв мм.  [c.163]


Смотреть страницы где упоминается термин Малые ферромагнетики : [c.184]    [c.521]    [c.99]    [c.83]    [c.289]    [c.653]    [c.12]    [c.213]    [c.545]    [c.384]    [c.638]    [c.137]    [c.289]    [c.296]   
Смотреть главы в:

Кластеры и малые частицы  -> Малые ферромагнетики



ПОИСК



Однородно намагниченное тело Определяющие уравнения для бесконечно малых деформаций в ферромагнетиках

Ферромагнетики

Энергетический спектр изотропного ферромагнетика при малых возбуждениях



© 2025 Mash-xxl.info Реклама на сайте