Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нелинейные оптические системы

Нелинейные оптические системы  [c.282]

Лебедев В. В. Нелинейно-оптическая система преобразования изображения из ИК-диапазона в видимый с высоким разрешением при когерентном освещении Дис.. .. канд. физ.-мат. наук 01.04.04.—Новосибирск ИФП СО АН СССР, 1975.  [c.164]

Использование в оптическом эксперименте лазерных источников света привело к открытию ряда явлений, не совместимых с принципом линейности. Практически одновременно с созданием первых лазеров были обнаружены такие нелинейные оптические явления, как генерация гармоник, сложение и вычитание частот световых потоков, вынужденное комбинационное рассеяние света, двухфотонное поглощение. Было ясно также, что сам лазер — это оптическая система, в которой важную роль играет эффект насыщения усиления света активной средой. Все это стимулировало бурное развитие теоретических и экспериментальных исследований нелинейного взаимодействия света с веществом, разработку методов практического использования нелинейных оптических явлений в науке и технике и привело, в частности, к возникновению нелинейной оптики.  [c.298]


Высокие плотности мощности и энергии, получаемые в современных лазерных установках, могут приводить к нелинейным оптическим эффектам, которые отсутствуют при работе с обычными световыми потоками. Поэтому необходимо сводить к минимуму взаимодействие между излучением и системами контроля. Общим требованием для всех методов измерения является по возможности максимальное удаление приемника излучения от лазера. Однако, если это требование выполнить не удается и излучение контролируется непосредственно около лазера, то необходимо тщательно его отфильтровывать, чтобы исключить попадание на приемник спонтанного излучения света лампы накачки, а при работе в инфракрасном диапазоне и осветительных приборов.  [c.94]

Из формул (119) видно, что значения величин h и D нелинейно зависят от параметров, характеризующих применяемую оптическую систему (Do, у), лазер (W) и природу обрабатываемого материала (Lq). Однако в большей мере величины h и D зависят от tg у, характеризующего угол светового конуса, создаваемого оптической системой.  [c.128]

Лит. Гиббс Д ж.. Термодинамика. Статистическая механика. пер. с англ., М., 1982, гл- 12 К р ы л о в Н. С., Работы по обоснованию статистической физики, М,— Л,. 1950 Б а л е-с к у Р., Равновесная и неравновесная статистическая механика, лер. с англ., т. 2. приложение Эргодическая проблема, М.. 1978 Заславский Г, М., Стохастичность динамических систем, М,, 1984, гл. 1 Л о с н у т о в А. Ю., Михайлов А. С,, Введение в синергетику, М., 1990. Д, Н. Зубарев. РАЗНОСТНЫЙ тон — комбинационный тон с частотой 0)1 — Юа, возникающий в нелинейной акустич. системе при воздействии на неё двух звуковых колебаний с частотами о>1 и Особое значение Р. т. заключается в том, что он может оказаться в слышимом диапазоне частот, даже если 0)1 и ш, — неслышимые частоты, а это позволяет регистрировать сигналы с частотами ( 1 и Шд. РАЗНОСТЬ ХОДА лучей (в оптике) — разность оптических длин путей двух световых лучей, имеющих  [c.248]

В заключение отметим, что использование синтезированных голограмм в качестве пространственных фильтров в когерентных оптических системах обработки данных ограничивается главным образом линейной фильтрацией, хотя в последнее время появились сообщения о возможном использовании синтезированных голограмм в оптических системах для создания систем с пространствен-но-неинвариантными свойствами и выполнения нелинейных оптических преобразований [57, 101, 102, 109, 110].  [c.154]


Интересный чертой волноводной дисперсии является то, что ее вклад в D (или pj) зависит от параметров волокна радиуса сердцевины а и разности показателей преломления сердцевины и оболочки Ли. Этот факт может использоваться для смещения длины волны нулевой дисперсии Хд к 1,55 мкм, где световоды имеют минимальные потери. Такие световоды со смещенной дисперсией [63] могут в перспективе применяться в оптических системах связи. Можно создавать волоконные световоды с весьма пологой дисперсионной кривой, имеющие малую дисперсию в широком спектральном диапазоне 1,3-1,6 мкм. Это достигается путем использования многих слоев оболочки. На рис. 1.7 показаны измеренные дисперсионные кривые [64] для двух таких световодов с несколькими оболочками, имеющих двух- или трехслойные оболочки вокруг сердцевины. Для сравнения дисперсионная кривая для световода с однослойной оболочкой также показана (штриховой линией). Световод с четырехслойной оболочкой характеризуется низкой дисперсией ( D < 1 пс/км нм) в широкой спектральной области от 1,25 до 1,65 мкм. Световоды с модифицированными дисперсионными характеристиками полезны для изучения нелинейных эффектов, когда в эксперименте требуются специальные дисперсионные свойства.  [c.18]

Лазерные системы, генерирующие стабильные перестраиваемые по частоте импульсы с длительностями от 100 до 10 фс, несомненно, одно из ярких достижений современной физики и технологии. Важнейшими слагаемыми этого прогресса стали успешная реализация новых идей в комбинировании методов генерации и усиления коротких импульсов в активных лазерных средах, широкое использование управляющих ЭВМ, создание эффективных лазерных и нелинейно-оптических сред.  [c.239]

Резюмируем основные выводы геометрической оптики. Рассмотрение взаимодействия бесконечно узких астигматических пучков показало, что нелинейный кристалл всегда генерирует нормальные конгруэнции. Таким образом, по крайней мере в приближении геометрической оптики, нелинейный кристалл эквивалентен некоторой оптической системе, свойства которой мон -но указать, используя формулы связи параметров бесконечно узкого астигматического пучка суммарной частоты с параметрами узких астигматических пучков накачки и ИК-излучения (см. (2.44) — (2.49), (2.50) — (2.53)). Это позволяет заключить, что геометрические аберрации рассматриваемых преобразователей можно устранять корректирующей оптикой.  [c.97]

Последовательное удвоение частоты излучения позволяет получить гармоники колебаний основной частоты o)i выше второй. Предел повышения частоты определяется ростом поглощения в кристалле, начинающимся в ультрафиолетовой области спектра. Этот предел соответствует волнам Я = 200 нм. Более короткие волны получают при генерации гармоник в газах и парах металлов, области поглощения которых очень узки, что позволяет исключить резонансное взаимодействие световых импульсов с атомными переходами. Однако во всех газах, парах и жидкостях (т. е. в более общем виде во всех системах с инверсионной симметрией) нелинейные оптические коэффициенты четных порядков равны нулю [11, т. 1]. Поэтому в газах и парах могут генерироваться лишь третья, пятая... и т. д. гармоники с частотами 3o)i, 5o)i,. .. Путем преобразования частоты  [c.283]

Чрезвычайно высокие плотности энергии и могцности, достижимые в современных лазерах, часто приводят к нелинейным оптическим эффектам, которых не бывает при работе с обычными световыми потоками. Поэтому нужно стремиться к тому, чтобы свести к минимуму взаимодействие луча с системами контроля. Если такого взаимодействия нельзя полностью предотвратить, то необходимо знать свойства элементов этих систем, чтобы учесть различные эффекты, которые могут играть важную роль.  [c.20]

Распространение лазерного излучения в условиях действия нелинейно-оптических эффектов описывается системой уравнений Максвелла [23]  [c.9]

После создания мощных квантовых генераторов на оптических частотах (лазеров) возникла и в последние годы бурно развивается самостоятельная область исследований — нелинейная оптика. Понятие нелинейная оптика охватывает все явления в области высоких (оптических) частот, связанные с нелинейностью материальных уравнений в системе уравнений Максвелла. Большой интерес к этому разделу физики объясняется многими причинами. Нелинейная оптика создала новые возможности для изучения поведения ядер, атомов, молекул и твердых тел в электрических полях высокой напряженности. Кроме того, были найдены новые применения теории излучения и сформулированы законы распространения электромагнитных волн в нелинейных средах. Лазеры нашли необычайно широкие применения в самых различных областях науки и техники. При помощи нелинейных оптических эффектов можно получить новую информацию об отдельных атомах и молекулах и об их взаимодействии в плотных средах. На основании различных нелинейных оптических эффектов удалось создать новые когерентные источники света высокой интенсивности, частично с перестраиваемыми частотами. Кроме того, методы нелинейной оптики могут служить основой для развития других нелинейных теорий.  [c.8]


В настоящем томе для описания нелинейных оптических явлений применяется квантовая теория в формулировке Дирака. Основные определения и законы этой системы понятий сопоставлены в В2.1. Мы будем на них ссылаться позднее, не прерывая изложения конкретных проблем НЛО включением общих квантовомеханических закономерностей. Мы будем также опускать доказательства и далеко идущие интерпретации, ограничиваясь указанием учебной литературы [В2.-1, В2.-2]. В В2.2 будет рассмотрено применение основополагающих квантовомеханических закономерностей к определенным общим проблемам, соответствующие результаты понадобятся для квантовомеханического описания поля излучения и взаимодействия излучения с атомными системами.  [c.71]

НИИ значение потенциала, в котором происходит движение решетки, при определенной конфигурации положений ядер равно полной энергии основного состояния, причем эта энергия вычисляется при неподвижных ядрах в той же самой конфигурации. В дальнейшем изложении мы в той мере исходим из модельных допущений п. 3.161, в какой мы учитываем связанные с колебаниями электрические поля наряду с этим принимается во внимание периодичность кристалла. Определяющие соотношения для колебаний решетки (уравнения для плотности энергии, уравнения движения и др.) содержат в явном виде как механические компоненты, так и компоненты внутренних электрических полей в кристалле. Необходимые принципиальные познания об оптических (в особенности о нелинейных оптических) свойствах мы можем получить уже при изучении относительно простых кристаллов или модельных кристаллов так, например, мы рассмотрим решеточные волны линейной цепочки и в трехмерном представлении колебания решетки с определенным направлением поляризации и распространения в оптически изотропных кристаллах с двумя ионами в элементарной ячейке. Сначала мы займемся невозмущенной системой и изучим длинноволновые оптические колебания решетки (оптические фононы) и колебания поляризации (фо-нон-поляритоны), представляющие собой смешение решеточных и электромагнитных колебаний [3.1-2]. Затем мы перейдем к рассмотрению взаимодействия решетки с внешним полем излучения. Квантовое описание основных соотношений для невозмущенной системы, а также для взаимодействия с внешним полем излучения может быть успешно выполнено как в качественной, так и в количественной формах по аналогии с классическим рассмотрением. В ч. I и до сих пор в ч. II мы еще не обсуждали решеточные колебания, и поэтому нам придется начать издалека.  [c.371]

К числу основных недостатков оптических систем обработки информации относят ограниченность набора выполняемых ими операций. Один из путей преодоления этой трудности состоит в реализации нелинейных операций обработки информации (наряду с линейными, описанными в предыдущих разделах) в нелинейных оптических системах, где ПВМС используются в качестве двумерных нелинейных элементов (см. [218], стр. 371—429). С их помощью успешно реализуются следующие основные виды нелинейных операций 1) растровое преобразование 2) преобразование интенсивности в простраяственную частоту, 3) прямое нелинейное преобразование интенсивности.  [c.282]

В радиотехнике также находят применение нелинейные распределенные системы. Это, например, линии, заполненные ферритом, а также параметрические усилители бегущей волны на основе линий с сегнегоэлекгриком. В последние годы в связи с развитием лазерной техники нелинейные явления начали использоваться и в оптическом диапазоне.  [c.375]

ОПТИКА [ асферическая содержит элементы, поверхности которых, не имеют сферической формы просветленная обладает уменьшенными коэффициентами отражения света у отдельных ее элементов путем нанесения на них специальных покрытий) как оптическая система (волновая изучает явления, в которых проявляется волновая природа света волоконная рассматривает передачу света и изображений по световодам и пучкам гибких оптических волокон геометрическая изучает законы распространения света в прозрачных средах на основе представлений о световых лучах интегральная изучает методы создания и объединения оптических и оптоэлектронных элементов, предназначенных для управления световыми потоками квантовая изучает явления, в которых при взаимодействии света и вещества существенны квантовые свойства света и атомов вещества когерентная изучает методы создания узконаправленных когерентных пучков света и управления ими нелинейная изучает распространение мощных световых пучков в оптически нелинейных средах (твердые тела, жидкости, газы) и их взаимодействие с веществом силовая изучает воздействие на твердые тела интенсивного светового излучения, в результате которого может нарушаться механическая цельность этих тел статистическая изучает статистические свойства световых полей и особенности их взаимодействия с веществом тонких слоев изучает прохождение света через прозрачные слои вещества, толщина которых соизмерима с длиной световой волны физическая изучает природу света и световых явлений) как раздел оптики электронная занимается вопросами формирования, фокусировки и отклонения пучков электронов и получения с их помощью изображений под воздействием электрических и магнитных полей корпускулярная изучает законы движения заряженных частиц в электрическом и магнитном полях нейтронная изучае взаимодейс вие медленных нейтронов со средой) как раздел физики]  [c.255]

На голограммах диффузных объектов ограничение диапазона значений голограммы сказывается в появлении шума диффузности. Характер искажений изображений зеркальных объектов можно оценить по рис. 5.1, на котором представлено изображение, восстановленное с синтезированной голограммы в оптической системе,-Он показывает, что в результате ограничения отсчетов голограммы восстановленное изображение оказывается контурным. Этот факт имеет простое объяснение. Динамический диапазон Фурье-голо-грамм зеркальных объектов очень велик, ибо очень велика разница между интенсивностями низких и высоких пространственных частот их спектра Фурье. В результате ограничения, а также квантования значений голограммы соотношение между низкими и высокими пространственными частотами нарушается в пользу последних, что и приводит к передаче в основном только контурной информации [81]. Правильным выбором функции, корректи-руюш ей нелинейность регистратора, можно частично уменьшить искажения восстановленного изображения.  [c.107]


Общие идеи, лежащие в основе методов генерации сверхкоротких световых импульсов за счет фазировки компонент дискретного или сплошного спектра, пришли в оптику из радиофизики. Многомодовый лазер, в котором моды самосинхронизируются за счет взаимодействия в среде с нелинейным поглощением, является аналогом известного радиочастотного генератора коротких импульсов. Компрессия фазово-модулированных сигналов использовалась еще в 60-х годах для повышения пиковой мощности сигнала в радиолокационных системах. Возможности современной линейной и нелинейной оптической техники позволили реализовать эти принципы в гораздо большей мере, нежели это было сделано в радиотехнике.  [c.15]

Переход в фемтосекундный диапазон длительностей стал возможен благодаря прогрессу в генерации сверхкоротких импульсов видимого диапазона, развитию техники волоконно-оптической компрессии, усиления и нелинейно-оптического преобразования частоты из видимого в УФ диапазон. Это позволило сформировать достаточно мощные затравочные импульсы для каскадного усиления в эксимерных усилителях. Преимущества эксимерных сред для усиления фемтосекундных УФ импульсов обусловлены сравнительно большой шириной полосы усиления (Av 160 м для ХеС1 при >.=0,308 мкм), высоким удельным энергосъемом (1 Дж/литр) и большим КПД (1 %). Поэтому фемтосекундные лазерные системы, созданные в ведущих лазерных лабораториях, отличаются, в основном, техникой формирования затравочных УФ импульсов.  [c.271]

Настоящая книга является первой попыткой систематического изложения физических основ работы нового класса приборов нелинейной оптики — преобразователей инфракрасного излучения — в видимом диапазоне. Для удобства читателей, не имеющих специальной подготовки в области нелинейной оптики, монография включает главу (первую) с изложением основных понятий этого раздела физики, необходимых для восприятия предмета. Во второй главе даны общие принципы расчета нелинейно-оптических преобразователей и показано, что с точки зрения формирования изображений каждый преобразователь эквивалентен некоторой линейной оптической системе с эффективными параметрами, зависящими от конфигурации и фазового фронта накачки, ее амплитуды, типа использованного синхронизма. В третьей и четвертой рассмотрены две основные схемы нелинейно-оптических преобразователей — схемы критического векторного и касательного (некритичного) синхронизма. Обсуждаются достоинства и недостатки каждой из них и возможные варианты оптимизации параметров. В последней главе анализируются разные практические аспекты работы преобразователей (спектральные и шумовые характеристики), приведены экспериментальные данные, иллюстрирующие степень соответствия параметров реальных преобразователей основным теоретическим представлениям. Приложения 1 и 3 несут самостоятельную информацию, поскольку в первом приведен новый метод в классической теории аберраций на основе интегрального принципа Гюйгенса — Френеля, а в третьем — расчетные данные по углам разных типов синхронизма. Часть информации дана в компактной форме — показаны эквипотенциальные поверхности угол синхронизма как функция длин волн накачки и инфракрасного излучения. Материал третьего приложения основан на расчетах Г. М. Барыкинского.  [c.3]

Перспективы широкого практического использования нелинейно-оптических приемников зависят от параметров каждой из трех основных частей схемы приема — оптической накачки, нелинейной среды и системы регистрации излучения видимого диапазона. Если в вопросе регистрации видимого излучения трудно ожидать каких-либо качественных изменений, то по каждому из первых двух пунктов последнее время наблюдается заметный прогресс. Использование в качестве нелинейных сред новых кристаллов с большими нелинейными восприимчивостями, большими размерами и высоким оптическим качеством и в ряде случаев газов позволило суш,ественно ослабить ограничения, связанные с низким коэффициентом преобразования при сравнительно маломош,-ной накачке. С другой стороны, в области создания источников накачки наметился принципиальный сдвиг благодаря появлению полупроводниковых лазеров нового поколения. Совершенно реально ожидать в ближайшее время появления достаточно надежных малогабаритных источников накачки мош ностью порядка нескольких ватт в непрерывном режиме. Это выведет нелинейпо-оп-тические приемники уже на приборный уровень — непрерывный режим работы при высокой энергетической эффективности, малогабаритность и простота конструкции.  [c.143]

Среди возможных применений Преобразования частоты в режиме векторного синхронизма в молекулярных кристаллах можно указать на эффективное преобразование частоты с разделением входа и выхода, на создание логических элементов быстродействующих счетных машин, например типа И , основанных на комбинации удвоителя частоты и параметрического генератора, работающего в режиме уменьшения частоты вдвое. Сигнал на выходе такой системы будет появляться лишь при одновременной подаче под углом векторного синхронизма двух световьдх пучков на вход удвоителя частоты. Такие логические элементы имеют равноправные входные и выходные сигналы, что позволяет объединять эти элементы в более крупные блоки без снижения скорости действия отдельных структурных единиц. Это выгодно отличает нелинейные оптические логические элементы от логических элементов на оптронах [265].  [c.182]

Следует отметить, что логические элементы быстродействующих счетных машин с оптическим входом можно создавать и на основе других комбинаций различных нелинейных оптических элементов. Так, например, в качестве логического элемента И мо ет также служить система, состоящая из пироэлектрического детектора (устройства, вырабатьтающего сигнал низкой частоты при поглощении импульса оптического излучения) и подключенной к нему ячейки Керра [266]. При поглощении оптического импульса напряжение, возникшее на пироэлектрике, откроет на некоторое время ячейку Керра. Сигнал на выходе системы появится лишь при одновременном попадании световых импульсов на пироэлектрик и ячейку Керра. Молекулярные кристаллы благодаря большому пироэлектрическому эффекту (триглицинсульфат, мета-нитроанилин), значительной нелинейной восприимчивости и двулучепреломлению (мета-нитроанилин) вполне могут быть использованы в описанных вариантах оптических логических элементов.  [c.182]

Для применения НБН в качестве электрооптических и нелинейно-оптических элементов в лазерных системах необходимо иметь монодоменные кристаллы. С этой целью производится их монодоменизация — нагрев и охлаждение до комнатной температуры в постоянном электрическом  [c.217]

Отдельный раздел главы посвящен решению задачи о четырехволновом смешении в средах с локальным нелинейным откликом. Получено общее решение, учитывающее нарушение условия пространственного синхронизма. На примере записи лишь пропускающих решеток выполнен анализ характеристик генерации в различных оптических системах.  [c.62]

Монография представляет первую в мировой литературе попытку аналитического рассмотрения современного состояния разработок н применений (включая перспективные) диэлектрических материалов в электронной технике. В ней описаны особые свойства диэлектриков линейные и нелинейные диэлектрические, пьезо-, пиро-, сегнетоэлектрические, сегнетоэластические, электро-, аку-СТО-, нелинейно-оптические, лазерно-генерационные. Рассмотрены корреляции между мерой выраженности конкретных свойств и обусловливающими их особенностями структуры. Приведены характеристики основных типов используемых и предложенных устройств, включая интегральные и полифункциональные. Предложена система критериев качества рассматриваемых материалов применительно к видам их применений. Подробно протабулированы характеристики используемых и вновь предлагаемых материалов, а также типовых ИЭТ и ИФЭ с функциональными элементами из диэлектрических материалов с особыми свойствами. Проведен анализ перспектив развития отдельных направлений, сформулированы прогнозные перечни новых материалов. Книга может быть использована как современное справочное руководство при выборе материала для решения ряда прикладных задач.  [c.2]


До настоящего времени большинство экспериментальных исследований оптической нутации, затухания свободной поляризации и фотонного эха производилось в твердых телах на узких линиях при низких температурах и в газах, где можно работать с относительно длинными импульсами высокого качества и небыстродействующими системами регистрации. Применение пикосекундных и субпикосекундных импульсов лазеров на красителях с непрерывной накачкой и нелинейных оптических систем регистрации позволяет в настоящее время наблюдать подобные эффекты в средах с большим уширением линии усиления, например жидкостях (см. [28—30]).  [c.323]

В главах, посвященных генерации импульсов, было показано, что лазеры на красителях с непрерывной или синхронной накачкой позволяют получить субпикосекундные импульсы с высокой частотой следования (до 10 Гц) и хорошей воспроизводимостью. При таких частотах следования измеряются не отдельные импульсы до и после их прохода через образец,, а усредненный за большое число импульсов сигнал. Сигнал возбуждения образца, следующий по каналу импульсов возбуждения, периодически включается и выключается с относительно низкой частотой при помощи модулятора (например, вращающегося диска с отверстием). Таким образом, на фотоприемник попеременно поступают пробные сигналы, прошедшие через возбужденный и невозбужденный образцы (рис. 9.15). Электронная система регистрации избирательна и настроена на частоту прерывания возбуждения. Поэтому регистрируемый сигнал пропорционален разности средней энергии пробного излучения при наличии и отсутствии возбуждения. Применение в резонаторе лазера системы выбрасывания импульсов позволяет, если это требуется, снизить частоту следования импульсов (см. гл. 5) и одновременно увеличить их мощность. Это особенно необходимо в тех случаях, когда возвращение образца в исходное основное состояние происходит медленно. Интервал времени между сигналом возбуждения и следующим за ним пробным сигналом может устанавливаться при помощи оптической линии задержки, связанной с шаговым двигателем. По выбору в канал возбуждения и пробный могут быть введены кристаллы для генерации второй гармоники. Другие нелинейные оптические процессы преобразования в общем случае использовать трудно, так как интенсивность слишком мала. (Применение усилителей с импульсной накачкой (см. гл. 5), позво-  [c.342]

Среди широкого спектра нелинейных оптических явлений наибольший интерес в приложении к проблеме зондирования вызвал низкопороговый лазерный пробой на твердых включениях дисперсной среды. Указанный эффект является технически реализуемым в реальной атмосфере на расстояниях в сотни метров от излучателей, в качестве которых могут применяться импульсные лазеры, например, на СО2, HF, DF, стекле с неодимом и эксиме-рах, снабженные системой фокусировки пучка. Дистанционный лазерный пробой сопровождается генерацией оптических спектров испускания, электрического и магнитного импульсов, а также широкополосного акустического излучения. Это может служить физической основой бесконтактных методов определения атомного состава и ряда метеорологических параметров пограничного слоя атмосферы по схеме источник — приемник, т. е. без решения математической обратной задачи.  [c.194]

Все это за последние 25 лет привело к значительному развитию оптики, существенно расширились ее приложения. Начало этому процессу было положено важными работами, приведшими к созданию квантовых генераторов излучения. Наряду с фундаментальными работами по мазерам и лазерам советскими физиками внесен большой вклад в развитие многих важных разделов оптики. Напримбр, таких, как рассеяние света, голография, оптические системы, нелинейная оптика и т. д. В этом развит оптики фундаментальные основы ее, естественно, не претерпели существенных изменений. В ряде случаев они были прояснены, а в других случаях — обогащены проникновением понятий, методов, математических приемов и т. д. из других областей науки (например, теории случайных процессов, физики линейных и нелинейных колебаний, матричньк методов расчета и т. д.).  [c.9]

Квантовая электроника достигла больших успехов в создании лазерных источников света с высокой напряженностью поля, хорошими когерентными свойствами, перестраиваемой частотой и регулируемым распределением излучения во времени. Созданы также регистрирующие устройства высокого временного и спектрального разрешения. С помощью этой новой совершенной аппаратуры в последние годы удалось провести многочисленные и качественно новые эксперименты по взаимодействию межДу электромагнитными полями н атомными системами. Одновременно продолжалось теоретическое изучение таких взаимодействий и была создана теория процессов, происходящих в сильных когерентных полях, причем в зависимости от характера конкретных процессов на передний план в большей или меньшей степени выдвигались квантовые свойства атомных систем нли поля излучения. В некоторых случаях учитывались сразу квантовые свойства как атомных систем, так и поля излучения. Эти экспериментальные и теоретические исследования в нелинейной оптике позволили получить принципиально новую информацию о процессах взаимодействия между светом и атомными системами в различных состояниях, а также о физических и химических свойствах веществ и о параметрах процессов, влияющих на ход нелинейных оптических явлений. Открылись новые горизонты в спектроскопии, фотофизике, фотохимии и квантовой электронике, а также в области их технических применений.  [c.8]


Смотреть страницы где упоминается термин Нелинейные оптические системы : [c.18]    [c.245]    [c.26]    [c.543]    [c.317]    [c.241]    [c.284]    [c.6]    [c.55]    [c.72]    [c.73]    [c.78]    [c.159]    [c.166]    [c.184]    [c.322]    [c.481]   
Смотреть главы в:

Пространственные модуляторы света  -> Нелинейные оптические системы



ПОИСК



Ось оптическая системы

Системы нелинейная



© 2025 Mash-xxl.info Реклама на сайте