Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные уравнения и их интегральная форма

Основные уравнения и их интегральная форма  [c.367]

В первом разделе работы Умов вводит основные понятия, включая понятие потока энергии, и получает на их основе математическое выражение закона сохранения энергии в дифференциальной и интегральной формах. Во втором и третьем разделах он исследует законы движения энергии в конкретных случаях в упругих телах, Б жидких средах и при переносе энергия между взаимодействующими телами, пространственно отделенными друг 01 друга. В каждом случае он получает математические выражения компонент вектора плотности энергии— уравнения движения энергии.  [c.153]


Общее уравнение энергии в интегральной и дифференциальной формах. Турбулентность и ее основные статистические характеристики. Конечно-разностные формы уравнений Навье-Стокса и Рейнольдса. Общая схема применения численных методов и их реализация на ЭВМ. Одномерные потоки жидкостей и газов. Расчет трубопроводов.  [c.186]

При исследовании напряженно-деформированного состояния тел с трещинами широкое применение нашел метод сингулярных интегральных уравнений. Он особенно удобен и эффективен при решении плоских задач теории упругости для тел сложной геометрии, содержаш,их включения, отверстия и трещины произвольной формы. Впервые [И, 137, 181] сингулярные интегральные уравнения использовались при исследовании распределения напряжений около прямолинейной трещины (или полосы пластичности) в некоторых классических областях (полуплоскость, полоса, бесконечная плоскость с круговым отверстием). Система произвольно ориентированных прямолинейных трещин изучалась в работах [21, 22, 70]. Рассматривался также случай криволинейных трещин в бесконечной плоскости [16, 40, 74, 92, 117]. В работах [94—96] основные граничные задачи для многосвязной области, содержащей изолированные криволинейные разрезы и отверстия произвольной формы, сведены к системе сингулярных интегральных уравнений по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. Эти результаты обобщены на случай, когда разрезы выходят на границу тела, а также соединяют отверстия между собой и (или) с внешней границей [97]. К настоящему времени появилось большое количество работ, в которых методом сингулярных интегральных уравнений изучаются плоские задачи теории трещин. Обзор этих исследований имеется в работах [5, 32, 45, 54, 70, 95, 100].  [c.5]

Несмотря на большое разнообразие приближенных методов, их можно в основном отнести к двум типам. В приближенных методах первого типа используются различные формы интегральных уравнений и соотношений, полученных из уравнений пограничного слоя. По существу такой подход является непосредственным продолжением хорошо известных методов расчета безотрывных течений пограничного слоя. Задача о расчете отрывного течения сводится к интегрированию системы нелинейных обыкновенных дифференциальных уравнений. При этом теряется информация о распределении функций по толщине пограничного слоя. Поэтому вводится предположение о том, что эти профили принадлежат к тому или иному семейству в зависимости от числа свободных параметров, соответствующего числу уравнений для определения их изменения вдоль потока. Система дополняется соотношениями, связывающими распределение толщины вытеснения пограничного слоя с характеристиками внешнего потока. Для получения удовлетворительных результатов важное значение имеет выбор семейства профилей распределения параметров по толщине пограничного слоя, а также соотношений для расчета внешнего невязкого течения.  [c.268]


Уравнения (XII.52) и (XII.53) по форме одинаковы одинаковы также их граничные условия, уравнение неразрывности является общим. Тогда для получения основных зависимостей для ламинарного диффузионного слоя достаточно в известных решениях для теплового слоя произвести замену тепловых величин на соответствующие диффузионные. Например, интегральное соотношение для диффузионного слоя запишется в виде  [c.322]

Как уже указывалось выше, число работ, содержащих различного рода приближенные методы расчета отрывных и безотрывных сверхзвуковых течений с распространением возмущений вверх по потоку с учетом эффектов взаимодействия, чрезвычайно велико. Однако большая их часть относится к небольшому числу основных направлений. Одно из направлений связано с использованием интегральных уравнений пограничного слоя. Задача об отрывном или безотрывном взаимодействии области вязкого течения с внешним невязким сверхзвуковым потоком сводится к интегрированию системы нелинейных обыкновенных дифференциальных уравнений первого порядка. Эти уравнения получаются формальным интегрированием уравнений пограничного слоя в поперечном направлении. В них входят определенные интегральные характеристики пограничного слоя толщины вытеснения, потери импульса, энергии и т. п. Кроме того, добавляется соотношение, определяющее связь между распределением давления в невязком сверхзвуковом потоке и толщиной вытеснения области вязкого течения. Информация о формах профилей скорости и энтальпии в пограничном слое оказывается утерянной и должна быть постулирована в виде каких-либо семейств кривых, зависящих от такого же числа свободных параметров, сколько имеется уравнений для определения их распределения по продольной координате. Для получения удовлетворительных результатов важное значение имеет выбор семейства профилей распределения параметров поперек пограничного слоя. Единственным критерием качества является сопоставление результатов с экспериментальными данными.  [c.11]

Обсудив основы теории оптического мониторинга системы атмосфера — подстилающая поверхность, вернемся к тем исходным предположениям, которые делались при выводе основных функциональных соотношений (3.4), (3.67), а также последнего интегрального уравнения (3.72). Дело в том, что при их построении не учитывались возможные эффекты многократного рассеяния и, следовательно, процесс формирования оптического сигнала во всех без исключения геометрических схемах зондирования существенно упрощен. В частности, при расчете функций источника нами учитывались лучи двух типов (соответственно / и 2 на рис. 3.16) из той совокупности, которые в принципе могут достичь точек на выбранной линии визирования. Более строгий подход к выводу уравнений теории зондирования рассеивающей компоненты атмосферы, когда необходимо учесть, скажем, лучи типа 3 я 4 (см. рис. 3.16), неминуемо приводит к использованию уравнения переноса в более общей форме, каким, в частности, является его трехмерный вариант для сферически однородной атмосферы.  [c.221]

Существует два способа расчета параметров жидкости в пограничном слое. Первый способ заключается в численном решении системы дифференциальных уравнений пограничного слоя, впервые полученных Прандтлем, и основывается на использева-нии вычислительных машин. В настоящее время разработаны различные математические методы, позволяющие создавать рациональные алгоритмы для решения уравнений параболического типа, к которому относится уравнение пограничного слоя. Такой подход широко используется для определения характеристик ламинарного пограничного слоя. Развиваются приближенные модели турбулентности, применение которых делает возможным проведение расчета конечно-разностными численными методами и для турбулентного потока. Второй способ состоит в нахождении методов приближенного расчета, которые позволяли бы получить необходимую информацию более простым путем. Такие методы можно получпть, если отказаться от нахождения решений, удовлетворяющих дифференциальным уравнениям для каждой частицы, и вместо этого ограничиться отысканием решений, удовлетворяющих некоторым основным уравнениям для всего пограничного слоя и некоторым наиболее важным граничным условиям на стенке и на внешней границе пограничного слоя. Основными уравнениями, которые обычно используются в этих методах, являются уравнения количества движения и энергии для всего пограничного слоя. При этом, однако, необходимо задавать профили скорости и температуры. От того, насколько удачно выбрана форма этих профилей, в значительной степени зависит точность получаемых результатов. Поэтому получили распространение методы расчета параметров пограничного слоя, в которых для нахождения формы профилей скорости и температуры используются дифференциальные уравнения Прандтля или их частные решения. Далее расчет производится с помощью интегрального уравнения количества движения.  [c.283]


В настоящей главе приведены основные уравнения газовой динамики с учетом физико-химических превращений. Даны уравнения газовой динамики в дифференциальной и интегральной формах, а также их запись в дивергентном виде. Выписаны уравнения газовой динамики, в которых в качестве независимых переменных использованы функции тока. Представлены соотношени5г на поверхностях разрывов. Обсуждены наиболее характерные начальные и граничные условия. Выведены соотношения на характеристиках уравнений газовой динамики. Представлены некоторые фундаментальные аналитические решения основных задач газовой динамики обтекания тел, течения в соплах и струях, задача о распаде произвольного разрыва, задача о взрыве.  [c.31]

Рассмотренные ниже задачи выравнивания заключаются в определении параметров выравнившегося потока, и их решение достигается путем применения основных уравнений сохранения неразрывности, количества движения и энергии в интегральной форме к подходящим образом выбранному контрольному контуру.  [c.232]

Основное внимание в монографии уделяется явлению рассеяния оптического излучения и решению соответствующих обратных задач применительно к дистанционному оптическому зондированию атмосферы. В ней обобщаются результаты исследований, по--лученные авторами и их сотрудниками в последние годы по методам интерпретации оптических измерений. Именно явление светорассеяния в первую очередь определяет то, что принято понимать под оптикой атмосферы [27]. С другой стороны, оно лежит в основе дистанционных методов исследования полей физических и оптических параметров атмосферы. В монографии значительное место отводится построению эффективных алгоритмов оперативной обработки и интерпретации оптической информации, которая может быть получена с использованием таких измерительных систем, как спектральные радиометры, многочастотные лидары, по-.ляризационные нефелометры, спектральные фoтoмeтpJ5I, установленные на космических платформах и т. п., а также измерительных комплексов, которые могут быть составлены из указанных оптических систем. Это, по мнению авторов, должно способствовать олее широкому использованию методов решения обратных задач светорассеяния в практике атмосферно-оптических исследований. Что же касается математических аспектов теории интерпретации косвенных измерений, которые необходимо сопутствуют любому исследованию по обратным задачам, то их изложение в основном дается в краткой форме и по возможности элементарно. Во многих случаях, где это оказывалось возможным, изложение основного материала сопровождалось численными примерами. В тех разделах, где речь идет о некорректных задачах, широко используется известная аналогия между линейным интегральным уравнением и линейной алгебраической системой. Поэтому для большей ясности в понимании и прочтении формульного материала интегральные операторы во многих местах можно заменять соответствующими матричными аналогами. В целом содержание монографии достаточно замкнуто и не требует, по мнению авторов, излишне частого обращения к дополнительной литературе. Вместе с тем авторы не гарантируют легкого чтения всех без исключения разделов монографии. В ряде мест естественно требуется определенная проработка и осмысление материала, особенно для той категории читателей, которая впервые знакомится с обратными задачами оптики атмосферы или собирается практически исполь- зовать ту или иную вычислительную схему интерпретации в своей работе.  [c.7]

А А . .. Ап Uo, Ui Fo, 0 = Ui, U l, 0, 0 , причем A- = = A ( -f- -Й). Здесь в фигурных скобках вектор-столбец U dUldx, Q, М , Aj— обычная переходная матрица (см., например, [3]) участка балки между сечениями xj, Е — единичная матрица четвертого порядка, В — матрица, у которой единственный отличный от нуля элемент r i = к. Численное решение такой задачи не представляет трудности, когда число участков не слишком большое. Таким образом, можно сконструировать модель агрегата, где общ,ая рама представлена в виде комбинации небольшого числа простейших элементов тина балок, пластин, оболочек простейшего вида. К такой модели рамы прикрепляются элементы указанного выше типа. Комплексная функция действительного аргумента к (со) выбирается по данным экспериментального определения жесткостей подсистем в точках соединения их с рамой. Для определения с (р) по известному к (со) необходимо было бы решить интегральное уравнение. Здесь рассматривается простейший случай, когда с (р) задано и решение может быть получено в замкнутой форме или в виде зависимостей между основными безразмерными параметрами задачи.  [c.70]

Пути решения проблемы. В проблеме получения больших автоэмиссионных токов, а, следовательно, и использования автокатодов с большой рабочей площадью, решающую роль играет геометрическая неоднородность микровыступов по рабочей поверхности катода. С помощью интегральной технологии удается достичь достаточной равномерности радиусов закруглений эмиттирующих центров, см. например [220, 221]. Однако неизбежно присутствующие при автоэмиссии адсорбция остаточных газов и ионная бомбардировка приводят к неодинаковому изменению радиусов закругления микровыступов или, если следовать терминологии уравнения Фаулера—Нордгейма, форм-фактора. Это приводит к перегрузке отдельных микровыступов, их взрывному испарению, разряду между катодом и анодом, и, как следствие, к деградации катода. В случае автокатодов из углеродных материалов геометрическую однородность эмиттирующих микровыступов создать практически невозможно. Поэтому основным инструментом, выравнивающим эмиссионные характеристики поверхности автокатода, является формовка, о чем уже неоднократно упоминалось. Однако, как показано выше, простая формовка для автокатодов большой площади не приносит желаемых результатов. Это связано, по-видимому, не только с большой неравномерностью микро-, но и макроповерхности катода, а также с изменениями расстояния анод—катод, которые при их малой величине играют очень большую роль. Один из наиболее перспективных на сегодняшний день путей решения этой проблемы состоит в разделении катода на электрически изолированные фрагменты, индивидуальной формовке каждого фрагмента и сдвиге вольт-амперных характеристик фрагментов в заданный допуск (естественно, в более высоковольтной области) [214]. Такие операции осуществляются с помощью вычислительно-управляющих комплексов на базе ЭВМ путем снятия вольт-амперных характеристик до токов, бйльших первоначального значения для формовки, после чего производится повторная формовка автокатода. После ее окончания вольт-амперная характеристика в области больших токов практически не изменяется (в координатах Фаулера—Нордгейма), а в области минимальных токов — сдвигается до попадания в требуемый допуск. При параллельном включении обработанных таким образом автокатодов наблюдалось полное сложение токов в полученной многоэмиттерной системе, т. е. в пределах флуктуаций общий ток равен сумме токов эмиссии каждого из катодов [222]. На основании указанных операций получен [214 ( автоэмиссионный ток 100 мА в непрерывном режиме с 9 автоэлектронных катодов из пучков углеродных волокон диаметром 70 мкм. Расстояние анод—катод 1,5 мм, давление остаточных газов 5 -10 Па. Предельный ток до формовки системы из 9 катодов не превышал 2 мА. В результате индивидуальной формовки каждый из катодов обеспечивал эмиссионный ток на уровне 10—15 мА. Вольт-амперные характеристики всех  [c.157]


Настоящая монография посвящена исследованию распределения напряжений около трещин в двумерных телах. На основе метода сингулярных интегральных уравнений рассмотрены задачи теории упругости и термоупругости, а также задачи об изгибе пластин и пологих оболочек для однородных изотропных областей, ослабленных криволинейными трещинами. В предыдущей монографии автора Распределение напрялсений около трещин в пластинах и оболочках ( Наукова думка , 1976 соавторы В. В. Панасюк и А. П. Дацышин) предложен метод решения таких задач для системы произвольно ориентированных прямолинейных трещин. Здесь этот метод обобщен на случай гладких н кусочно-гладких криволинейных разрезов-трещин, что дало возможность единым подходом рассмотреть в общей постановке основные граничные задачи для конечных или бесконечных многосвязных областей, ослабленных отвер-стиями н трещинами произвольной формы. По каждому классу задач приведены примеры их решеии51 предложен-  [c.3]

В приведённую выше схему (в несколько более сложном варианте для физико-математических моделей, когда речь идёт как о физических свойствах, так и об их математическом описании) укладывается и развитие отдельных понятий. Уточнение смысла основных применяемых понятий дано в заметках первой главы работы. Дано обобщение понятия материальной точки (заметка 1), рассмотрены понятия скорости и ускорения (заметка 2), обсуждается соотношение виртуальных перемещений и вариаций, используемых в дифференциальных и интегральных принципах (заметка 3). Закон Ньютона о действии и противодействии получен как следствие принципа равновесия Даламбера и второго закона Ньютона. Прослеживается логическая цепь, соединяющая принцип равновесия Даламбера с уравнениями даламберова равновесия , использующими понятие о силе инерции. Предложено описание взаимодействия в форме интегрального равенства (заметка 4). Обсуждаются аналоги теоремы об изменении кинетической энергии для реономных систем и место функции Гамильтона в уравнении энергии  [c.12]

Простая и удобная во многих отношениях форма интегрального уравнения в общем случае многосвязной области была найдена в 1940 г. Д. И. Шерманом. Дадим вывод уравнения Шермана, ограничиваясь по-прежнему случаем конечной односвязной области. Первую и вторую основные задачи будем на этот раз рассматривать одновременно, объединив их граничные условйя в следующее равенство  [c.50]

Относительная низкая чувствительность угловых измерений к тонкой структуре спектра размеров обусловливается, конечно, ядром соответствующих интегральных уравнений Кп х, ). Основным носителем информации о спектре размеров являются амплитуды Ми ап х) и Ьп х), зависящие от размера г и X (см. (1.5)). Функции Хп и Лп зависят только от угла О. Интенсивности I/ суть квадратичные формы от ап х) и Ьп х), в которых Хп и Пп играют роль коэффициентов, независимых от г. Вариации 5 (г) тем существеннее проявляют себя в полидисперсных функциях /, чем сильнее меняются ап(2лг к- ) и Ьп 2пгХ- ) ио г и X. Отсюда становится ясной роль в обратных задачах светорассеяния дисперсными средами спектральных оптических измерений. Кстати, в связи с вышеизложенным интересно заметить, что единообразие аналитической структурьг /, т. е. то, что они являются квадратичными формами от ап х) и Ьп х) с коэффициентами Яу ( 0 ), Хк (О) к, к =, . ..), делает их в совокупности зависимыми друг от друга. Конечно, вскрыть эту зависимость аналитическими средствами по аналогии с тем, как это делалось на примере си-  [c.36]


Смотреть страницы где упоминается термин Основные уравнения и их интегральная форма : [c.425]    [c.7]   
Смотреть главы в:

Методы граничных элементов в прикладных науках  -> Основные уравнения и их интегральная форма



ПОИСК



Основное интегральное уравнение

Основные интегральные уравнения

Основные уравнения сохранения многокомпонентной смеси газов в интегральной форме

Уравнение основное

Уравнения интегральные

Уравнения основные

Уравнения форме

Форма уравнением в форме



© 2025 Mash-xxl.info Реклама на сайте