Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упругие свойства химических элементов

УПРУГИЕ СВОЙСТВА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ  [c.44]

Упругие свойства немагнитных материалов на основе меди и нержавеющей стали значительно повышаются путем холодной пластической деформации. Технология изготовления упругих элементов из этих материалов относительно проста ввиду отсутствия необходимости в специальной термообработке отформованного упругого элемента. Физико-механические свойства и химический состав таких материалов указаны в табл. I [1].  [c.275]


Легирующие элементы существенно влияют на физические, механические, химические и технологические свойства стали. При введении их в состав стали могут повышаться ее упругие свойства (кремний, хром) вязкость (никель и др.), устойчивость против коррозии и кислотоупор ность (хром, никель, марганец, молибден, титан), жаростойкость и жаро прочность (хром, никель, алюминий и др.). Хро.м, никель, молибден, воль фрам, ванадий, кремний, марганец повышают прокаливаемость стали что дает возможность получить однородную структуру и повысить в ре зультате термической обработки механические свойства деталей значи тельно большего сечения по сравнению с деталями из углеродистой стали  [c.37]

Корунд (табл. 12.5) представляет собой химическое соединение алюминия с кислородом. Кроме элементов опор из корунда (чаще всего, из сапфира) изготовляют упругие элементы. Этот минерал отличают высокие упругие свойства, исключительно малый гистерезис, постоянство модуля упругости при переменной температуре. Из них можно изготовлять плоские и винтовые пружины, мембраны и трубчатые пружины.  [c.134]

В первом случае эффективными оказываются те химические элементы, которые способны в наибольшей степени увеличивать прочность межатомных связей и тем самым снизить скорость диффузии и самодиффузии атомов в сплаве и повысить его модуль упругости. Легирующие элементы, кроме того, не должны заметно снижать температуру плавления сплава. Для каждого металла — основы можно подобрать сравнительно немного элементов, обладающих указанными свойствами. К таким элементам относятся главным образом те, у которых атомы  [c.482]

Вследствие несовершенства упругих свойств реальных материалов ход статической характеристики = / (р) чувствительного элемента при увеличении и уменьшении нагрузки в пределах упругих деформаций неоднозначен и образует так называемую петлю Г.И с т е р е 3 и с а (рис. 10-1-1, с). Размер гистерезиса является важной характеристикой, поскольку он определяет погрешность прибора. Существенное влияние на размер гистерезиса оказывают химический состав, структура материала и значение напряжений в материале чувствительного элемента. Гистерезис выражается обычно в процентах  [c.363]

В первом случае эффективными оказываются те химические элементы, которые способны в наибольшей степени увеличивать прочность межатомных связей и тем самым снизить скорость диффузии и самодиффузии атомов в сплаве и повысить его модуль упругости. Легирующие элементы, кроме того, не должны заметно снижать температуру плавления сплава. Для каждого металла-основы можно подобрать сравнительно немного элементов, обладающих указанными свойствами. К таким элементам относятся главным образом те, у которых атомы по своей химической природе и по размерам резко отличаются от атомов металла — основы, являющегося растворителем.  [c.458]


Действие ядерных излучений на вещество в общих чертах состоит из следующих процессов. Во-первых, налетающие частицы, сталкиваясь с электронами, выбивают их, производя в веществе ионизацию (иногда возбуждение) атомов. Во-вторых, налетающие частицы достаточно высоких энергий при неупругом ядерном столкновении с ядрами могут частично разрушать ядра, например, выбивая из них протоны и нейтроны, ведет к появлению в веществе новых изотопов, в том числе новых элементов. Эти новые изотопы часто оказываются радиоактивными. В результате в веществе возникает наведенная активность. В-третьих, при выбивании электронов во многих веществах, особенно органических, могут разрушаться или, наоборот, возникать различные химические связи, что приводит к изменению химической структуры вещества. В-четвертых, при упругих столкновениях налетающих частиц с ядрами атомы вещества выбиваются из своих положений в кристаллической решетке в другие узлы или в междоузлия. В результате в решетке образуются разного рода дефекты, влияющие на различные физические свойства кристаллов.  [c.456]

Бериллиевые бронзы хотя и являются наиболее дорогими и дефицитными из всех медных сплавов, но в то же время характеризуются совокупностью ряда свойств, не имеющихся у других металлов и сплавов. Бронзы с содержанием 1,7—2,5% бериллия и легированные небольшими добавками никеля, кобальта, титана, марганца и других элементов обладают высокой химической стойкостью, износоустойчивостью и упругостью в сочетании с прочностью и твердостью, равной свойствам легированных сталей, а также высоким сопротивлением ползучести и усталости. Эти свойства бериллиевых бронз сохраняются до 315° С при 500° С прочность их снижается, но остается равной прочности оловянно-фосфористых и алюминиевых бронз при комнатной температуре. Для них характерна также высокая электропроводность, теплопроводность и неспособность давать искры при ударе. Применяются бронзы в виде полос, лент и других полуфабрикатов для изготовления особо ответственных деталей авиационных приборов и специального оборудования (мембран пружин пружинящих контактов некоторых деталей, работающих на износ, как, например, кулачки полуавтоматов в электронной технике и т. д.).  [c.240]

Физико-механические свойства и химический состав дисперсионно-твердеющих сплавов на медной основе для упругих чувствительных элементов и пружин  [c.277]

К первой группе относятся теоретические погрешности, получающиеся от применения приближенной схемы обработки кинематическая погрешность цепи деления станка погрешности зуборезного инструмента погрешности геометрических элементов станка погрешности установки зуборезного инструмента на станок погрешности от режимов резания погрешности от износа инструмента погрешности от деформаций упругой системы станок — деталь — инструмент в процессе обработки погрешности от температурных деформаций погрешности от внутренних напряжений погрешности от вибраций погрешности предварительной обработки зубчатого венца и заготовки погрешности от колебания механических свойств материала, химического состава, величины припуска и т. д.  [c.259]

Вакуумно-дуговой переплав осуществляется под вакуумом, поэтому нельзя забывать о возможных потерях элементов с высокой упругостью пара. Однако многие из этих элементов представляют собой "сорные примеси", способные, если при-. сутствуют в достаточных количествах, оказывать пагубное влияние на свойства сплава иными словами, удаление таких элементов, как свинец, висмут, олово, мышьяк и цинк, является благоприятным событием. Но опасность потерь в таких летучих элементах, как марганец и медь в сплавах, где их содержание строго определено, требует некоторых изменений в практике вакуумно-дугового переплава. В этих случаях плавку ведут под некоторым парциальным давлением азота или аргона, либо заблаговременно оптимизируют исходный химический состав электрода. Важно понимать, что вакуумно-дуговой переплав не был предназначен для удаления летучих элементов. Следует помнить и то, что эти элементы, даже если они полезны в том или ином отношении, понижают стабильность дуги. Когда же они образуют мощный конденсат на стенках изложницы, происходит серьезное ухудшение качества поверхности слитков.  [c.139]


Мартенситные и мартенсито ферритные стали обладают хорошей коррозионной стойкостью в атмосферных условиях, в слабоагрессивных средах (в слабых растворах солей, ки слот) и имеют высокие механические свойства (табл 33) В основном их используют для изделий, работающих на из нос, в качестве режущего инструмента, в частности ножей, для упругих элементов и конструкций в пищевой и химической промышленности, находящихся в контакте со слабо агрессивными средами (например, 4—5 /о ная уксусная ки слота, фруктовые соки и др ) Эти стали применяют после закалки и отпуска на заданную твердость Благодаря ма-  [c.276]

Таблица 12.1. Химический состав и механические свойства термически упрочненных сплавов для упругих элементов приборов Таблица 12.1. <a href="/info/9450">Химический состав</a> и механические <a href="/info/58616">свойства термически</a> упрочненных сплавов для упругих элементов приборов
Лишь небольшое количество опытов на растяжение поликристаллических металлов, которые обсуждает Понселе в своем обзоре экспериментов по пластичности, было проведено до 1841 г. для образцов металлических элементов с плохо изученными свойствами и предварительной историей. На протяжении последующих лет практики-металлурги достигли успеха в создании точных технологий для большого ассортимента продукции — химических соединений металлов, которые позволяли получить не только стабильный модуль при малых деформациях в условиях различных предписанных, технологически важных нагружений, а не только при осевой деформации, но и необычно высокие значения предела упругости по сравнению с металлическими элементами. Вопрос о том, какое возможное влияние имели предварительные термическая и механическая истории, которые были частью этих технологий, а также какое влияние оказывал химический состав на вид функции отклика при конечной деформации в пластической области за пределом текучести, не был предметом практического интереса, когда разрабатывались эти технологии.  [c.160]

В механике полимеров с самого ее зарождения существовала тесная связь между подходом механики твердого тела и физико-химическими соображениями. Поскольку многие конструкционные элементы находятся в сильном магнитном поле, для их расчета приходится совместно рассматривать уравнения теории упругости и уравнения электродинамики. В этом случае поведение конструкционных элементов зависит не только от механических, но и от электропроводящих свойств. Это способствует развитию теории магнито-упругости проводников и диэлектриков.  [c.280]

Все эти процессы упругопластического деформирования, молекулярного взаимодействия, тепловые, окислительные и вызываемые ими изменения физико-механических и химических свойств металлов в поверхностно-активном слое в конечном счете и определяют изнашивание трущихся поверхностей реальных деталей машин. Анализируя эти процессы, И. В. Крагельский обращает внимание на двойственную молекулярно-механическую их природу молекулярное взаимодействие обусловлено взаимным притяжением двух твердых тел, их адгезией механическое — взаи.м-ным внедрением элементов сжатых поверхностей. Он выделяет пять основных видов нарушения фрикционных связей, обусловливающих характер изнашивания (рис. 25). Упругое оттеснение материала / характеризуется отсутствием остаточных деформаций. Разрушение в зонах фактического касания и отделение частиц износа происходит лишь после многократного повторения нагружения. Пластическое оттеснение материала // характеризуется появлением остаточной (пластической) деформации. Число циклов нагружения, приводящее к разрушению основы, сравнительно мало (малоцикловая усталость). С увеличением нагрузки  [c.75]

Основным элементом конструирования является расчет на прочность. В настоящее время существует литература по анизотропным и вязкоупругим свойствам стеклопластиков и пластмасс, методам их испытаний и применению в общем машиностроении. С другой стороны, известна литература по классическим курсам теории пластин и оболочек теории упругости, пластичности и ползучести строительной механики и сопротивления материалов. Цель предлагаемой читателю книги состоит в синтезе этих двух сторон задачи для разработки методов расчета на прочность и устойчивость крупногабаритных конструкций нефтеперерабатывающей и химической промышленности из стеклопластиков и пластмасс с учетом специфических свойств материалов и условий их работы. В книге на основе результатов оригинальных исследований, а также передового отечественного и зарубежного опыта показано, какое оборудование  [c.3]

В первом случае эффективными оказываются те химические элементы, которые способны в наибольшей степени увеличивать прочность межатомных связей и тем самым снижать скорость диффузии и самодиффузии атомов в сплаве и повышать его модуль упругости. Легирующие элементы не должны также заметно снижать температуру плавления сплава. Для каждого металла-основы можно подобрать сравнительно немного элементов, обладающих указанными свойствами. К таким элементам относятся гпаеным образом те, у которых атомы по своей химической природе и по размерам резко отличаются от атомов металла-основы, являющегося растворителем. Как правило, используют легирование не одним, а группой элементов, между которыми возникают дополнительные химические связи. Поэтому современные жаропрочные сплавы представляют собой чрезвычайно сложные композиции, содержащие металл-основу и две-три или более легирующие добавки. Однако растворенные атомы легирующих элементов - сравнительно слабое препятствие движению дислокаций в металлической основе, в связи с чем эффект упрочнения наблюдается только до температуры 0,6 - 0,7 Т ц.  [c.161]


Бериллий — химический элемент Л группы Периодической системы ятомный вес 9,013, температура плавления 1283 С, плотность 1,860 г/см , иодуль упругости Е = 284 000-н 294 ООО МПа, Теплофизические свойства бериллия приведены в табл. 77.  [c.321]

Недостатками резиновых уплотнителей, ограничивающими область их применения в КУ, являются недостаточная стойкость в агрессивных средах и адгезионное взаимодействие с седлом при длительном контакте, вызывающее появление дополнительной силы прилипания. Сила прилипания в некоторых случаях существенно изменяет технические характеристики агрегатов. Данные недостатки устранены в конструкции КУ, показанного на рис. 7.10, л. Комбинированное уплотнение, состоящее из резинового элемента 3, тонкой (30—100 мкм) фторопластовой пленки 2 и седла 1, позволяет сочетать упругие свойства резины со свойствами фторопласта — не-прилипаемостью и химической стойкостью.  [c.233]

Элементы, придающие стали снецальные физико-химические свойства — коррозионную стойкость, особые магнитные характеристики, заданные коэффициенты термического расширения, неизменность упругих свойств и т. д. (хром, алюминий, никель, кобальт и др.).  [c.113]

Для изготовления мембран и других упругих элементов выбрана бронза БрБНТ1.7. Приведите химический состав, режим термической обработки и получаемые механические свойства материала. Опишите процессы, происходящие при термической обработке.  [c.147]

Трибология - наука о трении и процессах, сопровождающих трение [1]. Трибология как научная дисциплина охватывает экспериментально-теоретические исследования физических (механических, энергетических, тепловых, магнитных), химических, биологических и других явлений, связанных с трением. Получили развитие новые разделы трибологии трибофизика, трибохимия и трибомеханика. Для оценки трения необходимо учитывать взаимосвязь и взаимоотношения между контактирующими телами, внешними энергетическими воздействиями, накоплением и рассеянием энергии, а также последствия трибологических процессов. Процессом называется последовательность изменений свойств и состояний системы или ее элементов во времени, которые могут происходить одновременно и последовательно и приводить к изменению химического состава и строения материала (химические, ядерные изменения) либо энергетического состояния и свойств (физические изменения). Трибологические процессы являются вьшужденными, они могут быть обратимыми (упругая деформация, повышение температуры) и необратимыми (пластическая деформация, изнашивание).  [c.7]

Широкое распространение применительно к полимерным системам получила фононная теория теплоперенога Л. 35—38]. В ряде работ ТЛ. 39, 40] экспериментально установлена согласованность температурной зависимости теплопроводности полимеров с основными положениями фононной теории теплопереноса. С другой стороны, результаты экспериментов при низких температурах Л. 41], а также теоретический расчет теплофизичеоких параметров по скорости распространения упругих волн в растворах и твердых телах [Л. 42] не подтверждают правомерность применения фононной теории теплопр-реноса для таких сложных веществ, как полимеры. Альтернативный характер носят и другие положения фононной теории теплопереноса применительно к полимерным системам. Так, если руководствоваться результатами работы (Л. 43], то длина свободного пробега фононов в широком интервале температур для аморфных полимеров равняется среднему межатомному расстоянию и не зависит от температуры. Однако из приведенного выше обзора по физико-химическим свойствам полимеров видно, что за счет гибкости макромолекул (Л. 22] плотность упаковки структурных элементов полимера может претерпеть существенные изменения. Таким образом, специфика структуры полимерных систем накладывает неопределенность на понятие длины  [c.32]

Главная причина жизнеспособности суперсплавов в том, что они сохраняют выдающуюся прочность в интервале температур, при которых работают детали турбины. Их плотноупакованная решетка г.ц.к. обеспечивает длительную сохранность относительно высокого сопротивления активному растяжению, высокой длительной прочности, стойкости против ползучести и термомеханической усталости. Эти свойства длительно сохраняются вплоть до гомогологических температур значительно более высоких, чем у эквивалентных систем с решеткой о.ц.к. Свой вклад дают и такие характеристики решетки г.ц.к., как высокий модуль упругости, обилие систем скольжения, низкий коэффициент диффузии легирующих элементов. Для прочности сплавов чрезвычайно важна высокая растворимость легирующих элементов в аустенитной матрице, их физико-химические характеристики, обеспечивающие выделение в процессе старения таких интерметаллидных фаз, как у и у . Упрочнения можно достичь также за счет легирования твердого раствора, выделения карбидных фаз в процессе старения и использования их для управления границами зерен за счет направленной кристаллизации и соз-  [c.31]

Волокна — наиболее часто используемый армирующий элемент — несут внешнюю нагрузку. Они должны обладать низкой плотностью, высокими прочностью и модулем упругости, химической стойкостью и технологичностью изготовления, минимальной растворимостью в матрице, отсутствием фазовых превращений, нетоксичностью. Свойства волокон должны быть стабильны в условиях эксплуатации. В табл. 7.1 приведены свойства некоторых упрочняющих волокон.  [c.120]

Для упругих элементов, у которых должна быть наиболее высокая коррозионная стойкость, особенно в окислительных средах, а также высокая теплостойкость и хладостойкость, применяют дисперсионно-твердеющие сплавы системы Ni—Сг—W—Со (68НХВКТЮ). Из этого сплава изготавливают упругие чувствительные элементы и детали приборов, работающих при температуре от -196 °С до 500 °С. Химический состав, термическая обработка и свойства приведены в табл. 5.88, 5.89.  [c.357]

В промышленности применяют много разнообразных пружинных сплавов, так как в зависимости от условий службы упругих элементов — пружин, мембран, сильфонов, рессор и т. п.,а также их формы и размеров они должны обладать различными механическими, физическими й химическими и технологическими свойствами.  [c.194]

Ванадий находится в пятой группе периодической системы элементов, т. е. в одной группе с такими высокостойкими элементами, как ниобий и тантал. Ванадий обладает рядом ценных фи-зико-химических и механических свойств. При введении в сталь в качестве легирующей добавки он действует и как раскислитель, и как карбидообразующий элемент. Он способствует образованию тонкой и равномерной структуры. Обычно легирование стали ванадием повышает плотность, вязкость, предел упругости, предел прочности при растяжении и повторном изгибе [8—10].  [c.42]

Скорость и степень развития окисления стали под действием высоких температур зависят от ряда факторов температуры, времени, скорости и давления газов, состава газовой среды, химического состава стали, состава и физических свойств образующейся окалины. Для жаростойкости стали исключительное значение имеет последний фактор — свойства покрывающей металл окисной пленки. Эти свойства определяются температурой плавления, теплотой образования п упругостью диссоциации окислов. 1ем выше температура плавления, больше теплота образования и меньше упругость дпссоциацин окисла, тем выше его защитные свойства. Защитные свойства окалины сложнолегированных сплавов определяются свойствами составляющих ее окислов отдельных компонентов сплава и существующими между ними соотношениями. Пленка окислов, получающаяся на сплаве, может служить в качестве защитного слоя, если внутри ее нет легкоплавких окислов или окислов, способных отдавать свой кислород составным. элементам сплава, а также если она плотно пристает к металлу, газонепроницаема и сама по себе является огнеупорным (жаростойким) материалом [49].  [c.325]


Литературные данные о влиянии химического состава на склонность средне- и высокоуглердистых сталей к старению весьма противоречивы. Одни авторы [344] отмечают различное влияние содержания углерода на свойства после деформационного старения. Так, прирост твердости и прочности тем выше, чем меньше содержание углерода в стали, а для предела текучести и пропорциональности наблюдается обратная зависимость. Другие авторы показывают возрастание прироста пределов прочности и текучести [80, с. 316], твердости [II, с. 221 ПО, с. 150 247 266, с. 353], пределов прочности и упругости [35, с. 138] с увеличением содержания углерода в стали, т. е. усиление эффекта деформационного старения в средне- и высокоуглеродистых сталях с увеличением в стали количества карбидной фазы [11, с. 221 ПО, с. 150 247 266, с. 353 345]. Повышение интенсивности изменения свойств при деформационном старении с увеличением содержания углерода в стали было отмечено автором работы [346]. Уменьшение эффекта старения при повышении содержания углерода автор работ [249, 250] объясняет уменьшением диффузионной подвижности атомов азота — основного элемента, ответственного за старение.  [c.150]

Известны два основных класса неорганических стекол оксидные и бескислородные на основе соединений мышьяка, теллура, селена и других элементов Свойства бездефектного стекла зависят главным образом от химического состава. Так, модуль упругости кварцевого стекла равен (100 120)10 МПа, алюмоборсиликат-  [c.19]


Смотреть страницы где упоминается термин Упругие свойства химических элементов : [c.359]    [c.104]    [c.57]    [c.135]    [c.3]    [c.43]    [c.223]    [c.591]    [c.45]    [c.35]    [c.119]    [c.217]    [c.9]   
Смотреть главы в:

Металловедение и термическая обработка стали Справочник Том1 Изд4  -> Упругие свойства химических элементов



ПОИСК



Свойство упругости

Упругие свойства

Химические элементы — Свойства

Элементы Свойства



© 2025 Mash-xxl.info Реклама на сайте