Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные уравнения движения вязкого газа

Основные уравнения движения вязкого газа  [c.634]

ОСНОВНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ ВЯЗКОГО ГАЗА  [c.635]

Вернемся к выведенным еще в гл. II уравнениям динамики сплошной среды (29), которые именовались уравнениями в напряжениях , и заменим в них напряжения гю формулам (12) настоящей главы. Тогда получим основную динамическую систему уравнений движения вязкого газа  [c.475]

Для решения основного уравнения динамики вязкого газа (уравнение Навье — Стокса) в проекциях на оси координат необходимо совместить направление движения ленты между двумя роликами с положительным направлением оси X. Ось У направить перпендикулярно к абразивной поверхности ленты, ось 2 — поперек, затем принять граничные условия  [c.193]


Для вывода основных уравнений ламинарного движения вязкого газа в пограничном слое применим прием, ничем по существу не отличающийся от ранее уже использованного для несжимаемой жидкости.  [c.648]

Однако, существенно заметить, что, вычеркнув в основной системе уравнений движения члены, зависящие от вязкости, мы тем самым получили дифференциальные уравнения более низкого порядка. Очевидно, эти приближенные уравнения не могут удовлетворить всем граничным условиям первоначальных полных дифференциальных уравнений. Для вязкого газа существенным граничным условием является условие прилипания. Газ, лишенный трения, не может удовлетворить этому условию. В то же время решения уравнений идеального газа хорошо согласуются с наблюдениями уже на небольших расстояниях по нормали от обтекаемых границ.  [c.141]

Вязкость и теплопроводность проявляются только при наличии больших градиентов гидродинамических величин, которые имеют место, например, в пограничном слое при обтекании тел или внутри фронта ударной волны. В этой книге вязкость и теплопроводность нас будут интересовать в основном с точки зрения их влияния на внутреннюю структуру фронта ударных волн в газах. При изучении этой структуры течение можно считать зависящим от одной координаты X (плоским), так как толщина фронта ударной волны всегда намного меньше радиуса кривизны его поверхности. Поэтому мы не будем останавливаться на выводе общего уравнения движения вязкой жидкости (газа), которьи можно найти, например, в книге Л. Д. Ландау и Е. М. Лифшица [1], и поясним только, как можно получить уравнения для одномерного, плоского случая.  [c.66]

Основными уравнениями установившегося адиабатического движения вязкого газа являются уже известные нам уравнения неразрывности, количества движения и энергии.  [c.208]

В учебном пособии рассмотрены основные вопросы совре менной гидромеханики статика, кинематика и динамика. Приведены выводы общих уравнений движения сплошных сред. Даны законы переноса импульса, тепла и вещества. Изложена теория потенциального днижения как для плоских, так и для пространственных потоков. Рассмотрена сжимаемость газа при дозвуковых и сверхзвуковых течениях. Освещены вопросы теории движения вязкой жидкости, подробно рассмотрены ламинарное и турбулентное движения в трубах и в пограничном слое. Дан метод расчета трубопроводов.  [c.2]


Основными параметрами, характеризуюш,ими установившееся движение вязкого сжимаемого газа в каждом сечении двигателя, являются осредненные (в соответствии с принятым допущением) значения скорости с, плотности Q, давления р и температуры Т. Так как уравнение состояния позволяет исключить один параметр, то необходимо иметь еще три независимых уравнения, чтобы получить замкнутую систему уравнений относительно параметров, характеризующих движение газа. Одним из них является уравнение неразрывности. В качестве же остальных недостающих уравнений мог>т быть использованы любые два из трех рассмотренных энергетических уравнений — сохранения энергии, первого закона термодинамики и обобщенное уравнение Бернулли. Их выбор определяется только удобством решения задачи. Чаще он приходится на уравнение сохранения энергии и обобщенное уравнение Бернулли.  [c.26]

Проблема движения вязкой жидкости вблизи плохо обтекаемого тела представляет одну из наиболее сложных и до сих пор нерешенных проблем нелинейной механики жидкости. Роль конвективных членов, представляющих нелинейность в уравнениях Навье — Стокса, в создании зон замкнутых обратных токов, в явлении неустойчивости этих зон, начиная с некоторого критического рейнольдсова числа обтекания тела, отрыва их от тела и схода в область следа будет, вероятно, еще долго привлекать внимание исследователей. Велико прикладное значение этой проблемы. Такие важные технические задачи, как автоколебания цилиндрических тел в равномерных однородных потоках жидкостей и газов, звучание струн в потоках (эоловы тоны), использование обратных токов в следе за телом для стабилизации пламени в камерах горения, и ряд других близких по своей гидродинамической сущности проблем упираются в необходимость изучения динамических явлений в кормовой области плохо обтекаемых тел. Основная проблема сопротивления движению тел плохо обтекаемой формы в жидкостях и газах при малых и средних значениях рейнольдсовых чисел также остается до сих пор нерешенной.  [c.509]

Для стационарных краевых задач движения вязкой несжимаемой жидкости О. А. Ладыженской было доказано [33], что они имеют решения при любых числах Ке, причем даже для нерегулярных границ. Нестационарные краевые задачи имеют единственное решение [33], если в них отсутствует зависимость от одной из координат или есть аксиальная симметрия. В остальных случаях нестационарных задач имеется ряд ограничений на начальные данные и числа Ке. В частности, исследования О. А. Ладыженской подтвердили достоверность основной системы уравнений вязкой жидкости для не слишком больших чисел Яе. Это подтверждают и эксперименты, указывающие на существование в определенном диапазоне чисел Яе ламинарной формы движения жидкости (газа), описываемой приведенными системами уравнений.  [c.408]

Исследование движения диссоциирующей вязкой среды может быть связано с учетом влияния на это движение диффузии газа. Это находит свое выражение, в частности, в том, что диффузия учитывается при выводе уравнения энергии — одного из основных Уравнений газодинамики.  [c.115]

Оно отличается от первого из уравнений (3.31) наличием члена аАу в правой части. Уравнение (4.5) называется уравнением Навье-Стокса и является основным при расчете движения вязкой несжимаемой жидкости. Общее аналитическое решение этого уравнения не получено, и поэтому для его решения используются численные методы. На практике иногда приходится ограничиваться частными задачами. Одной из таких задач является течение невязкой несжимаемой жидкости. Ранее мы получили условие, при котором сжимаемостью жидкости или газа можно пренебречь. Теперь выясним, в каких случаях можно пренебречь силами вязкости.  [c.65]

Однако работа [Л. 1] выполнена с допущением, что физические параметры жидкости не зависят от температуры. Теплообмен при движении жидкости с переменной вязкостью впервые рассмотрен в работе Л. 2], где теоретически показано взаимодействие теплового и гидродинамического полей. Наиболее точные исследования по теплообмену в вязком потоке приведены в работе Л. 3], но эти исследования связаны с громоздкими расчетами нелинейных интегральных уравнений. Поэтому Г. Шу [Л. 3] удалось дать лишь оценку теплообмена в зависимости от направления теплового потока для двух случаев. В работе, [Л. 4] основное внимание уделяется напряжению сдвига в потоке газа при больших скоростях. Полной картины процесса теплообмена и гидродинамического сопротивления в вязком потоке ни одна из этих работ не отражает.  [c.237]


Пятое издание содержит изложение основных разделов механики жидкости и газа кинематики, статики и динамики. Общие дифференциальные уравнения динамики выведены как для однородной, так и для неоднородной, гомогенной и гетерогенной сред. Рассмотрены методы интегрирования уравнений динамики в задачах несжимаемых и сжимаемых, идеальных и вязких жидкостей п газов при ламинарных и турбулентных режимах движения. Приведено значительное число примеров приложений этих решений, иллюстрирующих большие возможности современных методов механики жидкости и газа в технической практике.  [c.2]

При помощи этого решения из уравнения переноса получается приближение основной системы уравнений сплошной среды, используемое для изучения движения невязких газов и жидкостей. Следующее приближение f служит для вывода уравнений движения вязких газа и жидкости. Отыскивая методом Чэпмэна-Энскога третье приближение решения кинетического уравнения, получаем уравнения, с помощью которых можно решать задачи о движении сильно разреженных газов — задачи молекулярной аэродинамики, весьма актуальные для исследования движения ракет и спутников в верхних слоях атмосферы.  [c.21]

Все теоретические исследования о движении вязкой жидкости исходят из предпосылки о справедливости уравнений Навье —Стокса для истинного неустановившегося пульсирующего движения. Однако ввиду крайней запутанности, извилистости и сложности траекторий частиц жидкости при турбулентном движении и, повидимому, вообще всех основных функпиональных связей получение решения уравнений Навье — Стокса для таких движений представляет собой крайне громоздкую и сложную задачу, которую можно сравнить с задачей об описании движения отдельных молекул большого объёма газа. Поэтому, подобно тому как в кинетической теории газов, так и в гидромеханике основные задачи о турбулентных движениях жидкости ставятся как задачи о разыскании <функциональных соотношений между средними величинами.  [c.128]

В этой книге получены свойства течений газа, исходя из модели молекулы и распределения скоростей молекул. Макроскопические свойства невязкого, сжимаемого (изоэн-. тропического) течения выведены в предположении, что молекулы являются просто сферами и подчиняются максвелловскому закону распределения. Для соответствующих вычислений в случае вязкого, сжимаемого (мало отличающегося от изоэнтропического) течения необходимо пользоваться более сложной моделью молекулы (центральное силовое поле) и функцией распределения, которая несколько отличается от функции распределения Максвелла. Примерами таких течений являются течения со слабыми скачками и течения в пограничном слое. Молекулярные представления позволяют получить и уравнения движения газа и граничные условия на поверхности твердого тела. Рассмотрение этих вопросов приводит к понятию о течении со скольжением и явлении аккомодации температуры в разреженных газах. Такие же основные идеи были использованы для построения теории свободномолекулярного течения.  [c.7]

Для определения локальных характеристик движения и теплообмена жидкостей и газов используются уравнения, следующие из основных физических законов сохранения массы, количества движения, энергии в сочетании с обобщенным законом вязкого течения Ньютона и законом теплопроводности Фурье. Это приводит к уравнениям неразрывности, движения и энергии, которые дополняются функциями свойств жидкости от температуры и давления. При отсутствии турбулентности в химически однородных однофазных изотропных средах полученная система уравнений является замкнутой. Эти уравнения справедливы и для описания мгновенных характеристик течения в пределах микромасщтаба турбулентного потока.  [c.230]


Смотреть страницы где упоминается термин Основные уравнения движения вязкого газа : [c.185]    [c.825]    [c.6]    [c.219]   
Смотреть главы в:

Механика жидкости и газа  -> Основные уравнения движения вязкого газа

Механика жидкости и газа Издание3  -> Основные уравнения движения вязкого газа



ПОИСК



33 — Уравнения основные тел вязких

Газы Уравнение движения

Движение газов

О газе в движении

Основное уравнение движения

Основные газы

Основные уравнения движения

УРАВНЕНИЯ движения газов

Уравнение в вязком газе

Уравнение основное

Уравнения движения вязкого газа

Уравнения основные

Уравнения тел вязких



© 2025 Mash-xxl.info Реклама на сайте