Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие теоремы теории оболочек

ОБЩИЕ ТЕОРЕМЫ ТЕОРИИ ОБОЛОЧЕК  [c.67]

Общие теоремы теории оболочек  [c.67]

В данной главе изложены общие вопросы теории преобразования вариационных проблем, которая позволяет выделить общие и частные вариационные принципы и теоремы и установить между ними эквивалентную взаимосвязь. Эта глава служит теоретической основой для исследования вариационных принципов теорий упругости и оболочек в гл. 3 и 4.  [c.27]


Исследование случая т=0. Ниже мы будем использовать результаты, сформулированные и доказанные нами в гл. III, 5. При наличии у оболочки одного отверстия т—0) мы имеем п =1, п= —2. Следовательно, индекс сопряженной однородной задачи So отрицателен и, согласно общей теореме из теории обоб-  [c.226]

Теоремы о взаимности работ и перемещений имеют большое значение в общей теории исследования напряженного и деформированного состояния стержней, пластинок, оболочек и других расчетных объектов. Их применение существенно упрощает решение многих задач строительной механики, а также производство опытов по определению перемещений.  [c.372]

С точки зрения приведенной теоремы сформулированная выше экстремальная задача (1.6) соответствует наиболее общему вариационному принципу теории трансверсально-изотропных оболочек. Поэтому из последнего, как частные случаи, должны вытекать все прочие вариационные уравнения. В частности, на базе (1.5) —  [c.67]

С точки зрения приведенной теоремы сформулированная выше экстремальная задача (У.б) соответствует наиболее общему вариационному принципу теории трансверсально-изотропных оболочек. Поэтому из последнего как частные случаи должны следовать все другие вариационные уравнения. В частности, на базе (У.5) и (У.б) могут быть сформулированы классические вариационные принципы Лагранжа и Кастилиано.  [c.82]

По аналогии с общей теорией пластичности, для жесткопластических оболочек можпо ввести понятие коэффициента предельно нагрузки, а также понятия кинематического и статического коэффициентов. Для них справедлива основная теорема, доказанная в 4.  [c.160]

Впервые теория марковских процессов в проблеме устойчивости оболочек была применена в [8]. Дальнейшее развитие см. в [9, И]. В этих работах была дана классификация случайных факторов, воздействующих на оболочку, и дан способ их одновременного учета с помощью теоремы о полной вероятности. Автор ограничился предположением о марковости обобщенных координат, что в широком классе задач оказывается достаточным для анализа проблемы устойчивости. Стремясь обосновать критерий уровня потенциальной энергии как основу построения статистической теории устойчивости, автор [8—11] рассмотрел случай б-коррелирован-ной по времени и пространственным координатам нагрузки (формула (38.23)). В. М. Гончаренко перенес рассмотрение на общий случай [12—16], когда марковским процессом считаются и обобщенные скорости и координаты. Кроме того, им изучен общий случай, когда внешняя нагрузка не б-коррелирована по пространственным переменным. В связи с рассматриваемым кругом вопросов В. М. Гончаренко перешел к рассмотрению распределений в пространствах С. Л. Соболева [17, 18]. Ряд задач рассмотрен в [3, 4, 6, 7, 19, 20]. К настоящему времени выполнено большое количество работ, в которых теория марковских процессов используется для изучения накопления усталостных повреждений в обо-23  [c.347]


В [3.167] рассмотрена оболочка типа сферического купола или сферического пояса при действии периодически изменяющейся во времени радиальной сосредоточенной силы, приложенной в произвольной точке. Общее решение задачи получено в виде суммы сингулярного решения, не учитывающего граничные условия, и регулярного решения, удовлетворяющего заданным граничным условиям. Радиальное смещение и функция напряжений представлены в виде рядов по функциям Лежандра. Эти ряды получены с помощью теоремы сложения для сферических функций при переходе от решения с силой в полюсе сферы к решению с силой в произвольной точке сферы. Случай стационарной нагрузки получается предельным переходом, если частоту колебания нагрузки устремить к нулю. Приведены результаты численного расчета и дано сравнение с решением по классической теории.  [c.225]

В этой главе показано, что общие теоремы теории упругости остаются справедливыми и для теории оболочек, основанной иа гипотезах Кирхгофа. Рассматривается вопрос о единственнойти решения и выводятся обеспечивающие последнюю варианты граничных величин. При этом делается предположение, что граничный контур срединной поверхности 6Q является плавной замкнутой кривой, а действующая на него внешняя нагрузка — само-уравновешеина. При. нарушении этих условий отправляем читателя к гл. 14.  [c.319]

В первых пяти главах учебника рассматриваются общие вопросы теории упругости (теория напряжений и деформаций, основные соотношения и теоремы, постановка и лгетоды решения задач теории упругости, плоская задача в декартовых координатах, плоская задача в полярных координатах). В шестой и седьмой главах излагаются основные уравнения теории тонких пластин (гибких и жестких) и некоторые задачи изгиба и устойчивости пластин. Восьмая глава учебника посвящена рассмотрению приближенных методов решения задач прикладной теории упругости (вариационных, конечных разностей, конечных элементов). В девятой главе рассматриваются основы расчета тонких упругих оболочек, причем основное внимание уделено вопросам расчета безмоментных и пологих оболочек. В десятой главе изучаются основы теории пластичности. Здесь рассмотрена и теория расчета конструкций по предельнол1у состоянию.  [c.6]

Излагаются методы эффективного построения этих решений и много внимания уделяется обстоятельствам, при которых решения существуют и единственны. Эти вопросы в безмоментной теории решаются нетривиально. Общая линейная краевая задача моментной теории оболочек единообразна она заключается в интегрировании эллиптической системы уравнений с выполнением в каждой точке края (или краев, если область многосвязна) четырех граничных условий. Она всегда имеет единственное решение. Однако при переходе к описанной выше безмоментной краевой задаче картина становится весьма пестрой, так как тип уравнений, подлежащих интегрированию, может оказаться любым (эллиптическим, гиперболическим и параболическим). Различными по своему характеру оказываются и краевые задачи безмоментной теории это могут быть задачи типа Дирихле, задачи типа Коши, а также задачи, не предусмотренные существующей классификацией. К тому же может существовать несоответствие между типом краевой задачи безмоментной теории и типом уравнений, для которых ее надо решать. Например, задачу Дирихле иногда приходится решать для гиперболического уравнения, а задачу Коши — для эллиптического. Все это приводит к тому, что теоремы существования и единственности для краевых задач безмоментной теории формулируются далеко не единообразно и в них вопрос не всегда решается положительно. Однако такая ситуация не свидетельствует о принципиальной порочности самой идеи выделения в самостоятельное рассмотрение краевой задачи безмоментной теории. Каждая из описанных выше странностей краевых задач безмоментной теории свидетельствует об определенных особенностях искомого напряженно-деформированного состояния оболочки. Для широкого класса задач это будет показано в части IV.  [c.174]


Галеркину ) принадлежит болыпой цикл исследований по теории изгиба тонких пластин, толстых плит и теории оболочек. Для вывода уравнений теории оболочек он, по-видимому, впервые применил уравнения трехмерной теории упругости. Папко-вичем ) впервые предложено решение задач теории упругости в перемещениях в форме гармонических функций, а также исследованы общие теоремы устойчивости упругих систем, решен большой цикл задач об изгибе пластин при различных граничных условиях.  [c.13]

Первые крупные исследования по общей теории упругих оболочек созревают к началу сороковых годов. Освоению и анализу теории оболочек способствовало применение ведущими учеными страны тензорной символики для записи основных соотношений теории. Уравнения совместности деформации впервые вывел А, Л. Гольденвейзер (1939) А, И. Лурье (1940) и А. Л. Гольденвейзер (1940) ввели в теорию оболочек функции напряжения, через которые определяются усилия и моменты, тождественно удовлетворяющие уравнениям равновесия. А, Н. Кильчевский (1940) указал способы построения теории оболочек и решения ее задач на основе теоремы о взаимности. Уравнения в перемещениях геометрически нелинейной теории были опубликованы X. М. Муштари (1939) — изложенный им вариант теории является обобщением упрощенной нелинейной теории пластинок Кармана на оболочки произвольного очертания.  [c.229]

Сделаем некоторые общие замечания к гл. V. Впервые вариационные соображения в нелинейной теории оболочек для доказательства разрешимости краевых задач были использованы И. И. Воровичем [4—5]. Впоследствии появилась работа [7]. Применительно к пластинам вариационные соображения находим в [101. Приведенная в 21—22 схема рассуждений для функционалов нелинейной теории пологих оболочек публикуется впервые. Основу рассуждений, как, видимо, уже заметил читатель, составляют неравенства (21.33) (теорема 21.3) и (22,42) (теорема 22.5). После их установления теоремы 21.4—21.7, 22.6 о существовании абсолютных минимумов функционала немедленно следуют пз результатов М. А. Красносельского [8], которому принадлежит понятие растущего функционала, или М. М. Вайнберга и Р. И. Качуровского [1—3]. Заключительная схема рассуждений теорем 21.4—21.7, 22.6, примененная автором, также не лишена самостоятельного интереса. Отметим также, что в задачах нелинейной теории пологих оболочек функционалы 5 ,х(а), 3 9н с), 3 т(ю), З х(ю) не являются выпуклыми, поэтому не представляется возможным использовать развитую в последние годы теорию для выпуклых функционалов, обзор которой см. в [3].  [c.199]

Теория оболочек, изложенная в монографии В. В. Новожилова (использованная и в настоящей книге), согласуется с вариационными энергетическими -принципами и теоремами взаимности, причем принятые в ней параметры допустимы в понимании В. Т. Койтера, но от уравнений, отнесенных к линиям главных кривизн, представленных в упомянутой монографии, не может быть осуществлен переход к уравнениям в тензорной ( юрме в общих координатах для произвольной оболочки. В частности, и в статико-геометрической аналогии в этой монографии должны иметься в виду не-тензбрные мембранные усилия и моменты.  [c.130]

Если поверхность (любого знака кривизны) не имеет бесконечно удаленных точек, ограничена только неасимптотическими краями и во всех точках этих краев она лишена свободы смещения в обоих тангенциальных направлениях, то такая поверхность не может изгибаться. Отсюда по теореме о возможных изгибаниях должно следовать, что полная краевая задача безмоментной теории при граничных условиях вида (17.34.1) на всех краях оболочки, не имеющей бесконечно удаленных точек, должна иметь решение (единственное) при любой, достаточно гладкой, нагрузке, если ни один из краев оболочки не касается асимптотических линий срединной поверхности. Справедливость этого утверждения доказана в 17.34 для сферического купола с плоским краем, а в 15.23 — для произвольной замкнутой оболочки нулевой кривизны с двумя неасимптотическими краями. Оно, по-видимому, останется правильным и в самом общем случае.  [c.261]

В первых трех главах изложены теории деформаций и напряжений, сформулированы физические соотношения трансверсально-изотропных оболочек, доказаны основные теоремы, дается общая постановка краевых задач теории, доказана теорема едииствеииости.  [c.3]

В то время как Ясинский и Энгессер занимались исследованием частных случаев продольного изгиба стержней, важная работа по общей теории устойчивости упругих систем была опубликована Брайэном (G. Н. Вгуап) ). Последний показал, что теорема Кирх-гоффа об единственности решений уравнений теории упругости применима лишь в тех случаях, когда все измерения тела являются величинами одного и того же порядка. Для тонких же стержней, пластинок и оболочек возможна более чем одна форма равновесия, отвечающая той же системе внешних сил, так что вопрос об устойчивости таких форм принимает важное значение в практике.  [c.359]


Смотреть страницы где упоминается термин Общие теоремы теории оболочек : [c.195]    [c.206]    [c.226]   
Смотреть главы в:

Теория упругих тонких оболочек  -> Общие теоремы теории оболочек



ПОИСК



Оболочки Теория — См. Теория оболочек

Общие теоремы

Теории Теоремы общие

Теория оболочек



© 2025 Mash-xxl.info Реклама на сайте