Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон сохранения импульса и дифференциальные уравнения движения

Уравнения (III.22), (III.23) и (III.25), выражающие закон сохранения импульса, называются дифференциальными уравнениями движения в напряжениях.  [c.68]

Применительно к механике сплошной среды, которая строится на основе ньютоновской механики, законы сохранения приводят к существенным результатам. Из закона сохранения массы следует уравнение неразрывности, т. е. необходимое условие существования движущейся и деформирующейся среды именно как сплошной. Из закона сохранения импульса следуют дифференциальные уравнения движения сплошной среды, которые являются основой расчета ее движения и деформации. Из закона сохранения момента импульса следует симметрия тензора напряжения, что существенно упрощает динамические уравнения сплошной среды. Закон сохранения энергии лежит в основе экстремальных принципов сплошной среды и энергетических методов расчета напряженно-дефор-мированного состояния.  [c.134]


Напряжения, скорости и плотность по обе стороны поверхности разрыва связаны между собой условиями, которые должны удовлетворять основным уравнениям механики сплошной среды и уравнениям состояния выбранной реологической модели. Основные уравнения механики сплошной среды лучше использовать в интегральном виде, так как для разрывных процессов интегральная формулировка физических законов по сравнению с дифференциальной обладает большей общностью. Для непрерывных же процессов интегральная и дифференциальная формулировки полностью эквивалентны [например, закон сохранения массы в интегральной форме (V.8) и дифференциальное уравнение неразрывности (V.10), закон сохранения импульса в интегральной форме (V.14) и дифференциальные уравнения движения (V.18)l. Используя закон сохранения массы (V.8) и закон сохранения импульса  [c.247]

Дифференциальные уравнения движения сплошной среды представляют собой законы сохранения массы, импульса и энергии.  [c.10]

Для полного аналитического описания процесса конвективного теплообмена необходимо задать систему дифференциальных уравнений, выражающих законы сохранения массы (уравнение неразрывности), импульса (уравнение движения), энергии соответствующие специальные законы переноса импульса и теплоты зависимость физических свойств теплоносителя от температуры и давления  [c.203]

Дифференциальные уравнения движения сжимаемой вязкой жидкости выводятся иа основе закона сохранения импульса  [c.14]

Назначение этого параграфа связано с анализом дискретных схем интегрирования уравнений движения (дискретных моделей). Вопросы, которые здесь обсуждаются, связаны с первую очередь с вопросами механики. При переходе к описанию уравнений движения в конечных разностях законы сохранения могут нарушаться. В связи с этим обсуждаются способы формирования численных схем, которые не приводят к нарушению законов сохранения. По существу речь идет о методах построения таких дискретных моделей, которые содержат в себе законы сохранения исходной непрерывной модели законы сохранения полной энергии, импульса, фазового объема и т. д. Необходимо заметить, что анализ этих вопросов имеет большое значение для механики. Это связано с тем, что предельные теоремы о равномерной сходимости ломаных Эйлера к решению дифференциальных уравнений движения имеют чисто теоретическое значение, так как при использовании ЭВМ этого предельного перехода не производится, а в качестве приближенного решения рассматривается соответствующая ломаная с достаточно малым, но не равным нулю шагом интегрирования И. Одним из возможных методов получения дискретных моделей служит вариационный принцип  [c.290]


Предположение (16) в дифференциальных уравнениях законов сохранения массы и импульса (3.11) приводит к системе уравнений движения  [c.88]

Основные дифференциальные уравнения сплошности (2.3), движения (2.12), (2.13) и (2.14) и энергии (2.51) выражают собой фундаментальные законы сохранения массы импульса (количества движения) и энергии. Кроме того, эти уравнения содержат подтверждаемые экспериментом гипотезы — закон вязкого трения Ньютона и закон Фурье.  [c.26]

Как известно из классической механики, систему из N частиц в случае пренебрежения их пространственной структурой (т. е. когда частицы рассматриваются как материальные точки) можно описать при помощи ЗМ дифференциальных уравнений, которым соответствуют 6Л интегралов движения, т. е. величин, сохраняющихся при изменениях, происходящих в системе. Полное число интегралов движения, естественно, задается тем, что в каждый момент времени система определяется ЗМ координатами и ЗА импульсами частиц (см., например, [1]). Среди 6А интегралов движения ) не все играют одинаковую роль. Чтобы выяснить эту роль, рассмотрим изолированную систему, т. е. систему, которая не подвержена действию внешних сил ). Для такой системы имеется десять интегралов движения, которые соответствуют физическим величинам, всегда сохраняющимся при любом произвольном взаимодействии между частицами системы во время движения. Эти величины, по крайней мере, в принципе можно измерить на опыте в рамках классической механики. 10 интегралов движения можно представить, в соответствии с их физическим смыслом, следующим образом 10 = 4-1-3-2. Цифра 4 соответствует закону сохранения  [c.9]

Соотношения на фронте сильного разрыва. Известно, что при движении газа могут образовываться поверхности, при переходе через которые газодинамические функции терпят разрыв — возникают так называемые ударные волны (сильный разрыв). Уравнения газовой динамики, записанные в дифференциальной форме, имеют смысл в областях непрерывного течения. В общем случае уравнения газовой динамики нужно рассматривать в интегральной форме, например вида (1.7)—(1.9). Рассматривая уравнения (1.7)—(1.9) в окрестности поверхности разрыва, можно получить алгебраические соотношения, выражающие законы сохранения массы, импульса и энергии, которые должны выполняться при переходе через сильный разрыв.  [c.17]

Аналитическое и численное исследование задач гидрогазодинамики связано с применением основных законов сохранения (массы, импульса и энергии) в дифференциальной форме. Ранее уже говорилось, что для подземной гидромеханики характерно изотермическое изменение параметров. Таким образом, для таких процессов можно не рассматривать уравнение энергии и ограничиться уравнениями баланса массы (неразрывности) и количества движения (импульса).  [c.11]

Прямая задача динамики для системы материальных точек сводится к решению системы ЗN дифференциальных уравнений, так как уравнение движения вида (11.1) для каждой из N точек системы дает в проекции на координатные оси три дифференциальных уравнения для координат точки хД/),>>Д ), ,(/). Строгое аналитическое решение удается найти лишь в исключительных случаях, поэтому обычно используют приближенные методы. Однако существует несколько строгих общих законов, которые хотя сами по себе и не позволяют в общем случае найти траектории отдельных точек системы, вместе с тем дают важную информацию о движении системы в целом. Это закон (или теорема) о движении центра масс и три закона изменения и сохранения импульса, момента импульса и механической энергии системы материальных точек. Их выводу и обсуждению посвящена настоящая глава.  [c.38]

Численное решение получаемых уравнений в форме системы обыкновенных дифференциальных уравнений (законов сохранения импульса для каждого узла — сосредоточенной массы) осуществляется в виде явной схемы по времени (3.2.5). При этом по заданным узловым скоростям с предыдущего полуцелого временного слоя определяются приращения в узлах, (Аеар)е в элементах, А ,- на узловых линиях стыковки элементов. Далее по реологическим соотношениям упруговязкопластического деформирования вычисляются напряжения в элементах и моменты в узловых линиях затем рассчитываются обобщенные внутренние силы в узлах используя уравнения движения, определяются ускорения в узлах и новые скорости для следующего шага по А . Таковы главные этапы алгоритма явной однородной схемы расчета дискретной модели.  [c.97]


Лоренц-инвариантиая форма дифференциального уравнения движения материальной точки. Обратимся сейчас к законам Ньютона и рассмотрим их применимость для релятивистской области. В соответствии с законом сохранения релятивистского импульса для свободной изолированной материальной точки делаем вывод первый закон Ньютона справедлив для релятивистской области свободная изолированная материальная точка движется равномерно прямолинейно в любой инерциальной системе. Второй закон Ньютона приводит к очевидным противоречиям с положением о существовании предельной скорости движения материальных тел и должен быть специально обобщен для квазирелятивистской области движения.  [c.282]

Механика сплошной среды (МСС) — раздел теоретической физики, в котором изучаются макроскопические движения твердых, жидких и газообразных сред. В ней вводятся фундаментальное понятие материального континуума и полевые характеристические функции, 01феделяющие внутреннее состояние, движение и взаимодействие частиц среды, взаимодействия между различными контактирующими средами. Для этих функций устанавливаются конечные, дифференциальные и другие функциональные уравнения, представляющие физические свойства среды в виде, определяющих соотношений, и законы сохранения массы, импульса, энергии и баланса энтропии. Выясняются начальные и граничные условия, при которых все характеристические функции в средах могут быть найдены чисто математически аналитическими и числовыми методами.  [c.3]

Такие уравнения полезны как в методах решения задач, так и в случаях, когда внутри или на границе области движения некоторые функции и функционалы разрывны. Уравнения получаются интегрированием по I соответствующих интегральных (по объему) выражений рассмотренных выше законов сохранения массы, импульсов и энергии либо интегрированием по и по К их дифференциальных выражений Но в принципе более правильно считать такие разностно-интегральные уравнения МСС аксиомами, непосредственно согласованными с основным постулатом, определяющим функционалы, так как, по существу, в них допускается возможность не непрерывных (по х, () решений, т. е. решений замкнутой системы в обоби енных функциях.  [c.166]


Смотреть страницы где упоминается термин Закон сохранения импульса и дифференциальные уравнения движения : [c.33]    [c.35]    [c.266]    [c.270]   
Смотреть главы в:

Теория пластичности  -> Закон сохранения импульса и дифференциальные уравнения движения



ПОИСК



Движение дифференциальное

Дифференциальное уравнение движения

Дифференциальное уравнение, движени

Дифференциальные законы сохранения

Закон Уравнение

Закон движения

Закон сохранения

Закон сохранения движения

Закон сохранения импульса

Импульс движения

Сохранение

Сохранение импульса

Уравнение импульсов

Уравнения сохранения



© 2025 Mash-xxl.info Реклама на сайте