Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория коррозии нержавеющих сталей

Теория коррозии нержавеющих сталей  [c.485]

Теория обеднения границ хромом, по которой межкристаллитная коррозия нержавеющих сталей происходит вследствие выпадения карбидов, наиболее правильно трактует существо явлений [1], однако необходимо учитывать также другие процессы.  [c.242]

На основании теории обеднения границ зерен в результате выпадения карбидов считали, что нержавеющие стали с низким содержанием углерода не могут быть подвержены межкристаллитной коррозии. Однако за последнее время были получены данные, указывающие на то, что стали с низким содержанием углерода (С <0,05%) в определенных условиях подвергаются межкристаллитной коррозии. Поэтому целесообразность борьбы с межкристаллитной коррозией нержавеющих сталей лишь посредством выплавки сталей с весьма низким содержанием углерода (0,02%) в настоящее время еще не ясна, тем более что получать такие стали в производственных условиях весьма трудно.  [c.243]


Исходя из электрохимической теории межкристаллитной коррозии нержавеющих сталей, представляется возможным обосновать ускоренные методы коррозионных испытаний. Если коррозия обусловлена электрохимической неоднородностью поверхности, то любой реактив, пригодный для быстрого определения коррозии, должен действовать на границы зерен, обедненные хромом, ответственные за межкристаллитную коррозию, оставляя в пассивном состоянии сами зерна. Если это условие не будет соблюдаться, то начнут корродировать зерна и межкристаллитная коррозия перейдет в общую.  [c.246]

В соответствии с теорией обеднения причиной межкристаллитной коррозии нержавеющих сталей является образование обедненной хромом зоны по границам зерен вследствие выделения при отпуске закаленной стали карбидов хрома, феррита или интерметаллического соединения РеСг (ст-фазы).  [c.100]

Природа межкристаллитной коррозии нержавеющих сталей в настоящее время изучена недостаточно, и существующие теории не во всех случаях позволяют объяснить восприимчивость их к межкристаллитной коррозии. Однако практические меры, предотвращающие появление этого вида коррозии, хорошо известны и широко  [c.88]

Некоторые из предложенных объяснений склонности ферритных нержавеющих сталей к межкристаллитной коррозии основаны на разнице скоростей растворения различных образующихся карбидов или на предполагаемой большей реакционной способности напряженной кристаллической решетки металла. Однако наиболее убедительное объяснение получено с помощью теории, широко используемой для объяснения этих явлений в аустенитных нержавеющих сталях. Согласно этой теории, разрушения происходят вследствие обеднения границ зерен хромом [36—38]. Различия в температурах и времени, необходимых для сенсибилизации этих сталей, объясняются более высокими скоростями диффузии углерода, азота и хрома в ферритной объемно-центрированной кубической решетке по сравнению с аустенитной гранецентрированной. В соответствии с этим, карбиды и нитриды хрома, которые растворены при высокой температуре, ниже  [c.310]

Гуляев А. П. Структурная теория межкристаллитной коррозии аустенитных нержавеющих сталей. — Тр. III Международного конгресса по коррозии. М. Мир, 1968, с. 243—248.  [c.115]

Таким образом, общей особенностью нержавеющих сталей является повышенная стойкость против различных коррозионных сред. Многообразие этих сред и условий службы изделий привело к созданию широкого сортамента нержавеющих сталей. Более полные сведения по теории коррозии и коррозионной стойкости нержавеющих сталей освещены в работах [1—7].  [c.15]


Существует ряд теорий, которые пытаются объяснить причины, вызывающие у нержавеющих сталей появление склонности к межкристаллитной коррозии. Наибольшим признанием пользуется гипотеза локального обеднения границ зерен стали вследствие образования богатых хромом карбидов хрома. Обедненные хромом зоны легко подвергаются действию коррозии. Как уже указывалось, образование карбидов хрома при дополнительном нагреве и сварке связано не только с изменением коррозионной стойкости стали, но и с тем, что в местах их образования наблюдается изменение электродного потенциала, магнитных свойств стали и других свойств, указывающих на возникновение структурной неоднородности.  [c.531]

Теория дифференциальных анодных кривых позволяет также дать объяснения явлениям межкристаллитной коррозии сталей и сплавов, наблюдаемым в некоторых растворах при анодной поляризации. В зависимости от природы раствора можно задать такой анодный потенциал потенциостатическим методом, при котором границы зерен будут в активном состоянии, а тело зерна — в пассивном состоянии. На этом принципе основаны некоторые методы ускоренных испытаний на межкристаллитную коррозию сталей и сплавов путем анодной поляризации, например, нержавеющих сталей в 10%-ной щавелевой кислоте, в 65%-ной фосфорной кислоте и др.  [c.59]

Высокие скорости распространения трещин ( 1 см/час), превышающие примерно на три порядка общую скорость коррозии, используются часто в качестве довода в пользу механической теории КР. Однако при этом упускается из виду, что при наличии растягивающих напряжений скорость растворения некоторых металлов, например аустенитной нержавеющей стали, как было показано Хором и сотр. [56, 57] может увеличиться на несколько порядков.  [c.124]

Как бы там ни было, некоторые спорные положения теории не должны беспокоить тех, кому приходится применять нержавеющие стали. Можно сказать, что опасности межкристаллит-ной коррозии не существует, если правильно выбрана надлежащая марка стали и соответствующий режим термической обработки.  [c.161]

Большое народнохозяйственное значение проблемы защиты металлов от коррозии обусловило необходимость организации специальных лабораторий для изучения механизма явления коррозии и разработки методов защиты от нее. Первая специализированная лаборатория была создана Г. В. Акимовым в ЦАГИ (1929 г.), где проводили работы по исследованию коррозии металлов в растворах электролитов, протекающей с участием кислорода воздуха, по теории многоэлектродных систем и стационарных потенциалов, по разработке нержавеющих сталей, по пассивности металлов.  [c.11]

Глава 12 НЕРЖАВЕЮЩИЕ СТАЛИ И СПЛАВЫ ОСНОВЫ ТЕОРИИ КОРРОЗИИ  [c.242]

Для объяснения возникновения склонности нержавеющих сталей к межкристаллитной коррозии предложено несколько теорий  [c.25]

Если существует почти абсолютное единство в точках зрения на причины появления склонности нержавеющих сталей к межкристаллитной коррозии, то объяснения, почему упомянутые карбидные выделения и новые фазы ее вызывают, весьма различны. В настоящее время существуют три наиболее распространенные теории, объясня-  [c.48]

Межкристаллитная коррозия встречается на сплавах различных систем и часто связана с присутствием выделений по границам зерен. Для нержавеющих сталей широко распространена теория, по которой выделения карбидов хрома приводят к обеднению хромом пограничной зоны, где наблюдается более сильная коррозия.  [c.608]

Теория обеднения хромом участков твердого раствора непосредственно вблизи границ зерен кажется не вполне приемлемой по ряду причин. Оказалось невозможным увеличить содержание хрома в аустенитной нержавеющей стали до такого предела, при котором эта сталь не подвергалась бы межкристаллитной коррозии. Стали 25-12 и 25-20, даже с крайне низким содержанием углерода, так же чувствительны к межкристаллитной коррозии, как и сталь 18-8 с меньшим содержанием хрома. Даже если довести содержание углерода в стали 18-8 до 0,01 "/о, то металл все же остается подверженным этому виду коррозии, хотя и в меньшей степени.  [c.58]


Наиболее распространенной теорией, признаваемой в настоящее время большинством исследователей, для объяснения межкристаллитной коррозии как хромоникелевых аустенитных нержавеющих сталей,так и высокохромистых сталей является теория обеднения границ зерен хромом. Сущность этой теории заключается в следующем. При комнаткой температуре углерод лишь незначительно растворяется в зернах твердого раствора. Прн повышении температуры растворимость углерода в твердом растворе увеличивается. Закалкой с высоких температур можно получить пересыщенный углеродом твердый раствор. При медленном охлаждении с высоких температур, а также при повторном нагреве (отпуске) закаленной стали из твердого раствора по границам зерен выделяются карбиды, более богатые хромом, чем твердый раствор, из которого они выпадают. Максимальное количество выпавших карбидов, как это видно из фиг. 132, имеет место после нагрева при 800° С.  [c.153]

Изложение теории выделения карбидов, приведенное выше, возможно, несколько упрощенное. В нержавеющих сталях, содержащих молибден, приобретает значение выделение твердой, хрупкой, немагнитной сигма-фазы. (Эта фаза может существовать в чистых железохромистых сплавах с очень высоким процентом хрома, но она может образовываться при значительно меньших содержаниях этого элемента, если в сплаве имеется 3—4% молибдена). Поскольку в сигма-фазе содержится значительно больше хрома и молибдена, чем в маточном твердом растворе, из которого она выделяется, участки, окружающие частицы сигма-фазы, по всей видимости, обеднены и поэтому могут подвергаться коррозии под воздействием некоторых реагентов. Таким образом, коррозионная стойкость иногда падает, если в структуре появляется сигма-фаза. Очевидно все же, сетка из сигма-фазы приводит к межкристаллитной коррозии только в азотной кислоте, в то время как сетка из карбидов вызывает сильную межкристаллитную коррозию в других кислотах [10]. .  [c.608]

В существующих теориях мен кристаллитной коррозии нержавеющих сталей это явление связывают с обеднением границ зерен хромом в результате образования новой фазы (карбиды хрома, сг-фаза) при отпуске закаленных сталей или замедленном их охланедении в интервале опасных температур. Однако они не объясняют причин возникновения межкристаллитной коррозии на закаленных стабилизированных нержавеющих сталях Х18Н9. Дать всестороннее объяснение этому весьма интересному явлению  [c.37]

В настоящее время получила распространение теория, которая связывает межкристаллитную коррозию дуралюмина с коррозионным разрушением интерметаллидов СиАЬ при их выделении в виде непрерывной цепочки по границам зерен. Причиной межкристаллитной коррозии нержавеющих сталей в сильноокислительных средах также может быть не коррозия обедненной хромом зоны, а коррозия фаз, выделяющихся в виде непрерывной цепочки по границам зерен. К таким фазам относятся интерметаллическое соединение РеСг(ст-фаза), б-феррит, фазы с мартенситной структурой. Так, например, ст-фаза растворяется в кипящем 65%-ном растворе НЫОз. Поэтому при выделении ст-фазы в виде непрерывной цепочки по  [c.103]

Наряду с теорией обеднения границ зерен хромом при выделении карбидов существуют и другие точки зрения на причину появления склоппостн к межкристаллитной коррозии нержавеющих сталей выделение богатого хромом феррита, интерметаллических соединений, 0-фазы, возникновение при выделении новой фазы напряжений и др. Однако наиболее обоснованной является теория обеднения границ зерна хромом.  [c.155]

Для проверки применимости электрохимической теории коррозионного растрескивания был поставлен специальный эксперимент. Он заключался в измерении критического потенциала инициирования КРН нержавеющей стали 18-8 в кипящем при 130 °С растворе хлорида магния с добавками и без добавок ингибирующих анионов [22]. Анодная поляризация тем скорее вызывает растрескивание, чем положительнее потенциал катодная поляризация, наоборот, увеличивает время до растрескивания. При потенциале ниже критического значения —0,145 В сплав становится практически устойчив (рис. 7.5, а). Добавление различных солей (например, СНзСООНа) к раствору Mg lj повышает критический потенциал. Когда критический потенциал становится положительнее потенциала коррозии, КРН прекращается (рис. 7.5, Ь). Следовательно, если критический потенциал равен потенциалу анода разомкнутой цепи, характеризующему катодную защиту, при которой скорость коррозии равна нулю (см. разд. 4.10), потенциал коррозии не может быть ниже критического. Однако, ввиду того что критический потенциал может быть и ниже, и выше потенциала коррозии, он должен иметь другое объяснение.  [c.140]

Это обстоятельство позволяет полагать, что положительное влияние никеля и других легирующих веществ с малым перенапряжением водорода на повышение коррозионной стойкости конструкционных материалов может быть вполне объяснено на основе теории эффективных катодных присадок, разработанной Н. Д. Тома-шовым [111,202]. Поданным К. Видема [111,157] смещение потенциала алюминия от стационарного значения в положительную сторону вызывает увеличение скорости коррозии металла. Это говорит о том, что при температуре 200° С в отличие от комнатных температур, стационарный потенциал алюминия соответствует активной области. При введении в.алюминий легирующих компонентов с малым перенапряжением реакции разряда ионов водорода и ионизации кислорода, скорость катодного процесса увеличивается, что приводит к смещению стационарного потенциала металла в положительную сторону. При этом достигаются значения потенциала, соответствующие области пассивации, а скорость коррозии алюминия значительно снижается. Аналогичного эффекта можно добиться, поляризуя металл анодно. Действительно, анодная поляризация улучшает коррозионную стойкость алюминия в дистиллированной воде при температуре 325° С, а катодная поляризация в этом случае увеличивает скорость коррозии [111,193]. На основании изложенного можно полагать, что те легирующие компоненты с введением которых скорость коррозии алюминия при низких температурах (медь, никель, железо и др.) увеличивалась, при высоких температурах должны способствовать увеличению коррозионной стойкости металла. Приведенные рассуждения подкрепляются следующими экспериментальными данными. Ж- Е. ДрейлииВ. Е. Разер [111,193] измеряли стационарный потенциал алюминиевых сплавов в дистиллированной воде при температуре 200° С. Электродом сравнения служил образец из нержавеющей стали. Стационарный потенциал алюминиевого сплава с концентрацией 5,7% никеля оказался на 0,16 б положительнее, чем стационарный потенциал алюминиевого сплава 1100. При катодной поляризации с плотностью тока Ъмш1см-потенциал сплава 11(Ю смещался в отрицательную сторону на 1,2б, в то время как смещение потенциала сплавов, легированных 11,7% кремния, составляло 0,34 б, а сплавов, легированных 5,7% никеля, 0,12 б, что является косвенным показателем того, что на двух последних сплавах скорость катодного процесса больше, чем на алюминиевом сплаве 1100. С точки зрения теории эффективных катодных присадок, легирование платиной и медью должно оказывать положительное действие на коррозионную стойкость алюминия. В самом деле, с введением в алюминий 2% платины или меди коррозионная стойкость последнего в дистиллированной воде при 315° С значительно увеличивается [111, 193]. С этих же позиций легирование свинцом, оловом, висмутом и кадмием не должно улучшать коррозионной стойкости алюминия, что и подтверждается экспериментальной проверкой [111,193]. Как установлено К. М. Карлсеном [111,173],  [c.198]


Исходя из адсорбционной теории пассивности, представляется возможным объяснить и установленные нами закономерности. Потенциал нержавеющей стали (1Х18Н9Т) в хлористом аммонии (0,5%), как это видно из рис. 171, имеет более отрицательные значения, чем критический потенциал питтингообразования, и поэтому вероятность появления иит-тинговой коррозии равна нулю. С введением в электролит окислителя и увеличением его концентрации потенциал стали все более смещается в положительную сторону (рис. 171, кривая /), что облегчает, с одной стороны, адсорбцию отрицательно заряженных ионов хлора и, с другой стороны, делает их более активными. Все это увеличивает и число возникающих питтингов (см. рис. 161, кривую 1). Начиная с определенной концентрации окислителя, потенциал стали перестает смещаться в положительную сторону, что не должно увеличивать адсорбцию хлор-ионов, а стало быть, и число зарождающихся питтингов. Более того, увеличение соотношения концентраций пассиватора к активатору, как показали адсорбционные измерения с помощью меченых атомов (С1 ), описанные выше, препятствует адсорбции хлор-ионов, что должно уменьшать число питтингов, зарождающихся на поверхности металла (см. нисходящую ветвь кривой 1 на рис. 161).  [c.333]

Перевод книги, изданной Научным центром яаерной энергии, содержит доклады 3-го французского коллоквиума металлургов, отражающие новейшие исследования вопросов окисления металлов. Делается попытка создать общую теорию окисления металлов. Рассматриваются механизм диффузии и газовой коррозии, кор розиоиностойкие сплавы при высокой темлературе, восяла.меняемость. магния и урана в различных газовых атмосферах, корроз.ия нержавеющих сталей, коррозия в. морской воде и другие вопросы.  [c.4]

В начальный период применения нержавеющих сталей электрохимическая теория коррозии вообще и межкристаллитной в частности еще не была так хорошо разработана, как в настоящее время, тем не менее эмпирическим путем был подобран ряд электролитов, хорошо выявляющих склонность нержавеющих сталей к межкристаллитной коррозии. Наиболее старый из них — смесь серной кислоты и сернокислой меди, предложенная Гатфильдом. Этот реактив действует на обедненную хромом зону вдоль границ и не действует на зерно.  [c.246]

На оборудование гидроочистки (а также таких высокотемпературных процессов, как каталитический риформинг и гидрокрекинг) при охлаждении после циклов регенерации воздействуют слабоокислительные среды с потенциалами, значительно более отрицательными, чем соответствующие начальной области перепаосива-ции. Поэтому аустенитные нержавеющие стали в этих условиях не подвергаются межкристаллитной коррозии (МКК) в закаленном состоянии [61—64] и приобретают склонность к этому виду разрушения только после нагрева при температурах так называемой опасной зоны (450—850 °С). Теория МКК хромоникелевых нержавеющих сталей и методы испытаний освещены в работах [65— 69] и др. Здесь рассмотрена лишь практическая сторона этого вопроса применительно к процессам гидроочистки, гидрокрекинга и каталитического риформинга. Срок службы оборудования из аустенитных сталей на этих установках определяется, в основном, временем образования в стали склонности к МКК (при том условии, что такая склонность не была приобретена уже в процессе изготовления оборудования) [48, 49].  [c.174]

На склонность нержавеющих сталей типа 12Х18Н9 к межкристаллитной коррозии большое влияние оказывает содержание углерода. При отпуске стали при 570° С выпадение карбидов хрома не происходит только при содержании углерода менее 0,015%. При большем содержании углерода при отпуске может происходить выпадение карбидов хрома по границам зерен, в результате чего сталь приобретает склонность к межкристаллитной коррозии. С повышением содержания углерода количество выпадающих по границам зерен карбидов хрома увеличивается и склонность ее к межкристаллитной коррозии повышается. Из теории обеднения следует, что легирование хромоникелевых аустенитных нержавеющих сталей элементами, связывающими углерод в устойчивые карбиды (титан, ниобий, тантал), резко понижает их склонность к межкристаллитной коррозии.  [c.102]

Электрохимический способ испытания нержавеющих сталей на межкристаллитную коррозию. На основе разработанных электрохимических аспектов теории межкристаллитной ко ррозии (МКК) создан экспрессный способ испытания нержавеющих сталей на этот вид локальной коррозии. Способ предназначен для контроля склонности нержавеющих сталей и изделий из них (в том числе сварных соединений) к МКК на металлургических, машиностроительных, химических и других предприятиях, а также в научно-исследовательских институтах при разработке, выявлении областей применения и отработке оптимальных режимов сварки новых, а также существующих марок нержавеющих сталей.  [c.288]

Хромоникелевые стали с содержанием 18% хрома и 8% никеля относятся к аустенитному классу нержавеющих сталей. При наличии в составе хромоникелевых нержавеющих сталей ферритообразующих элементов (хром, молибден, титан и др.) на верхнем пределе воз-можно образование наряду со структурой аустенита дополнительной фазы — феррита. Кроме того, в качестве дополнительной фазы в хромоникелевых сталях могут присутствовать карбиды и нитриды. Под действием пластической деформации в аустенитных хромоникелевых сталях отчетливо наблюдается превращение (-фазы, в а-фазу, что также способствует нарушению структурной однородности стали. Образование ферритной составляющей часто встречается в хромоникелевых аустенитных сталях с более высоким содержанием хрома и никеля, чем в сталях типа 18-8 при наличии молибдена и титана. С точки зрения электрохимической теории коррозии гетерофазность сплавов понижает коррозионную стойкость. Во многих случаях это положение справедливо, и дей-  [c.219]

Одним из важных вопросов при исследовании нержавеющей стали марки Х18Н10Т является ее межкристаллитная коррозия. Этому вопросу посвящено немало работ. О причинах межкристаллитной коррозии выдвинуто несколько теорий, найдены некоторые пути устранения этого явления. Однако до настоящего времени нет еще полных данных, раскрывающих природу межкристаллитной коррозии сталей типа Х18Н10 и, в частности, стали марки Х18Н10Т.  [c.41]

По адсорбционной теории, СГ адсорбируются на поверхности металла, конкурируя с растворенным Оз или ОН". Находясь в контакте с поверхностью металла, хлор-ион благоприятствует гидратации ионов металла и облегчает переход ионов металла в раствор. Адсорбированный кислород оказывает противоположное влияние и понижает скорость растворения металла. Другими словами, адсорбированные хлор-ионы увеличивают ток обмена (понижают перенапряжение) анодного растворения упомянутых металлов по сравнению со значением, которое наблюдается для поверхности, покрытой кислородом. Этот эффект настолько отчетливо выражен, что железо, хром и нержавеющие стали в растворах, содержащих значительные концентрации СГ, не могут анодно пассивироваться. Металл продолжает растворяться в соответствии с законом Фарадея, образуя ионы низшей валентности. Критическая плотность тока при этом исключительно высока. Нарушение хлор-ионом пассивности на отдельных участках происходит легче, чем по всей пассивной поверхности, причем предпочтительные места определяются, по-видимому, небольшими изменениями в структуре и толщине пассивной пленки. Образуются мельчайшие аноды активного металла, которые окружены большими катодными участками пассивного металла. Разность потенциалов между такими участками велика — порядка 0,5 в или больше. Создающийся в результате этого элемент называется а к т и в и о-п ассивным. Большие плотности тока на аноде вызывают большие скорости разрушения металла, что создает катодную защиту участка поверхности, непосредственно прилегающего к аноду. Результат фиксирования анода на определенном участке — питтинговая коррозия. Чем больше ток какого-либо питтинга и соответственно катодная защита окружающих питтинг участков, тем меньше вероятность образования в близком соседстве другого питтинга. Вследствие этого наблюдаемое число глубоких питтингов на единицу площади обычно меньше, чем  [c.72]


Межкристаллитная коррозия алюминиевых сплавов. Склонность к межкристаллитной коррозии некоторых алюминиевых сплавов типа твердых растворов в настоя-П1ее время связывается, как и в случае нержавеющих сталей, с возникновением второй фазы в процессе охлаждения сплава. Вторая фаза является анодом по отношению к твердому раствору. Таким образом, и в отношении этих сплавов также применима теория обеднения границ зерен.  [c.12]

В дальнейшем эта теория была развита в общую теорию выделения структурных составляющих [10]. Отличительной чертой последней является положение о том, что значительные местные напряжения, ускоряя выпадение избыточной составляющей сплава, ускоряют тем самым процесс образования местных гальванических элементов. Трещины увеличиваются за счет растворения вновь образующихся анодных участков. В мягкой стали такой составляющей (выделяющейся фазой) служит нитрид железа, в аустенитных нержавеющих сталях — продукты мартенситного распада. Теория выделения избыточных составляющих сплавов объясняет также процесс травления под напряжением в том смысле, что ускоренная коррозия может происходить на гетерогенных макроучастках, образующихся при выделении избыточных составляющих под влиянием деформации.  [c.600]

Современная теория межкристаллитной коррозии рассматривает нержавеющую ферритную сталь как трехэлектродную систему, состоящую из зерен феррита, карбидов хрома и железа на их границах и обедненных хромом периферийных участков этих зерен. Под влиянием кислорода окружающей среды (агрессивного агента) зерна феррита, содержащие большое количество хрома, и обогащенные хромом карбиды будут пассивироваться и приобретут положительный потенциал. Периферийные же участки зерен, обедненные хромом за счет отдачи последнего карбидам, пассивироваться не смогут и приобретут отр1щательный потенциал. Таким образом создается большое количество микрогальванопар, образованных по трехэлектродной схеме, в которой зерно и карбиды становятся 1-м и 2-м электродами (катодами), а обедненные хромом участки зерен — 3-м электродом (анодом). Относительно небольшая поверхность анодных участков испытывает воздействие больших участков катодных зерен, поэтому коррозионный ток достигает значительной величины и процесс межкристаллитной коррозии активно развивается. Полагают также, что выпадение карбидов хрома по границам зерен создает напряженное состояние, которое повышает эффективность воздействия агрессивной среды.  [c.344]


Смотреть страницы где упоминается термин Теория коррозии нержавеющих сталей : [c.132]    [c.5]   
Смотреть главы в:

Нержавеющие стали  -> Теория коррозии нержавеющих сталей



ПОИСК



504—505 ( ЭЛЛ) нержавеющие

Нержавеющие Коррозия

Сталь коррозия

Сталь нержавеющая

Теория коррозии



© 2025 Mash-xxl.info Реклама на сайте