Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Световые и электрические измерения

СВЕТОВЫЕ И ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ  [c.445]

Начальные световые и электрические параметры ламп, измеренные при расчетном напряжении, а также средняя продолжительность горения и средний конечный световой поток ламп при стендовых испытаниях должны соответствовать значениям, указанным в табл. 63.  [c.129]

Международная система СИ считается наиболее совершенной и универсальной по сравнению с предшествовавшими ей. Кроме основных единиц, в системе СИ есть дополнительные единицы для измерения плоского и телесного углов — радиан и стерадиан соответственно, а также большое количество производных единиц пространства и времени, механических величин, электрических и магнитных величин, тепловых, световых и акустических величин, а также ионизирующих излучений.  [c.496]


Вспомогательные электрические установки, обеспечивающие бесперебойную, безопасную и экономичную эксплуатацию основных силовых (первичных) электрических цепей, называют вторичными устройств а-м и. Назначение этих устройств следующее обеспечение защиты первичных установок от ненормальных условий работы, световая и звуковая сигнализация, измерение напряжения, силы тока, мощности электроэнергии, дистанционное управление оперативными аппаратами.  [c.260]

НОСТЬ источника имела бы форму круга диаметром 2—4 м.. При фотографических и электрических методах регистрации светового потока размеры рабочей части испускающей поверхности должны быть значительно больше. Очень часто поэтому конструкция и габариты источников специально приспосабливаются к соответствующим задачам и методам световых измерений.  [c.226]

Рассмотрим подробнее задачу об измерении максимальных интенсивностей спектральных линий фотографическими и электрическими методами. Прежде всего здесь, естественно, возникает вопрос, при каких условиях будут получены сравнимые рез ль-таты при регистрации столь существенно различными методами. Действительно, фотопластинка, как известно, реагирует на освещенность, а фото-илп термоэлемент—на световой поток (лучистый).  [c.427]

Современные турбины оснащены развитой системой защит, предупреждающих аварии при отклонении от нормы режима работы какой-либо из систем. Действие этих защит сопровождается световой и звуковой сигнализацией. Для выведения оборудования в устойчивое состояние (останов, новый уровень нагрузок, холостой ход) в момент срабатывания защит производятся переключения и отключения вспомогательного оборудования, арматуры, работает большое число средств измерения, авторегулирования, релейных устройств. Правильность взаимодействия всех этих узлов и устройств особенно тщательно должно опробоваться при пуске турбины после длительных простоев, когда вероятность отказов возрастает вследствие возможных ошибок ремонтного к наладочного персонала, внесения ка-ких-либо изменений, в том числе и непреднамеренных, в электрические И гидравлические схемы, вследствие разрегулировок от температурных и вибрационных воздействий.  [c.126]

В трибосопряжениях (трибосистемах) одновременно могут сочетаться несколько видов энергии механическая, тепловая, электрическая, химическая, световая и др. Для измерения  [c.441]

Вместе с тем учесть погрешности измерений параметров изделия при оценивании его состояния в целом непросто. Во-первых, приходится сталкиваться с большой номенклатурой измеряемых и контролируемых параметров различных видов (электрических, магнитных, световых и других), каждый из которых нередко требует индивидуального подхода и своего средства измерений. Так, в сложных радиотехнических изделиях измерениям при эксплуатации подвергается более 36 наименований параметров 6 видов (приложение 1). Во-вторых, требует большого искусства обнаружение, а при проектировании — предвидение систематических составляющих погрешностей измерений, их выделение из суммарной погрешности измерений, подбор методов оценивания. Интересные рекомендации Международного бюро мер и весов по определению погрешностей измерений изложены в работе Дж. Мюллера. В-третьих, большая часть измеряемых параметров изделий — косвенно измеряемые, нередко коррелированные между собой.  [c.43]


В табл. 2. 2 указаны лишь важнейшие производные единицы. Все остальные недостающие единицы для измерения механических, тепловых, электрических, магнитных, акустических, световых и других величин следует брать из Государственных стандартов на отдельные области измерения.  [c.22]

Опыт. Измерение мощности и световой эффективности электрической лампы. Для этого опыта нам понадобится лампа накаливания (либо с прозрачным, либо с матовым баллоном), свеча, две восковые пластинки ( домашний воск , используемый для запечатывания домашних консервов, желе и джемов) и кусок алюминиевой фольги. Эталоном будет служить свеча. Мы предполагаем, что эта свеча близка к стандартной свече, т. е. испускает свет мощностью около 20 мет в видимой области спектра. Параметры лампы неизвестны. Однако полная мощность лампы известна и указана на баллоне. Выходную мощность лампы в видимом диапазоне можно измерить сравнением со свечой. Положите алюминиевую фольгу между двумя пластинками парафина. Поднесите этот бутерброд из алюминия и парафина к свече. Запомните яркость пластинки, обращенной к свече, и темноту второй пластинки, следующей за фольгой. Теперь поднесите этот бутерброд к лампе. Далее (вечером, когда зажжена только свеча и горит лампа) расположите парафиновый детектор между лампой и свечой так, чтобы каждая пластинка освещалась одним источником. Найдите положения источников, при которых две пластинки будут освещены одинаково. Измерьте эти расстояния. Теперь дело за арифметикой (используйте закон обратных квадратов). Ответ для мощности лампы дайте в свечах и ваттах (предполагая, что свеча — это эталон). Определите эффективность лампы.  [c.207]

Такие фосфоресцирующие вещества характеризуются длительным послесвечением и, как уже упоминалось, сильной зависимостью длительности от температуры. Повышение температуры значительно сокращает длительность свечения, причем одновременно очень сильно повышается яркость его. Явление можно наблюдать на следующем простом опыте. Возбудим фосфоресценцию экрана сернистого цинка, осветив его ярким светом электрической дуги. Перенесенный в темноту экран будет светиться в течение ряда минут, постепенно угасая. Если к светящемуся экрану с противоположной стороны прижать нагретое тело, например диск, то нагревшаяся область экрана ярко вспыхнет, отчетливо передавая контуры нагретой области. Однако через короткое время эта область окажется темнее окружающей, ибо более яркое свечение сопровождается более быстрым затуханием (высвечиванием). Измерения показывают, что световая сумма, т. е. интеграл по времени от интенсивности свечения, остается практически постоянной даже при ускорении высвечивания в тысячи раз (так, например, при нагревании до 1300 время свечения с нескольких часов сокращается до 0,1 с).  [c.765]

Контроль геометрических параметров объектов с необходимыми эффективностью, точностью и быстродействием возможен при использовании методов многомерного оптического кодирования измерительной информации. Такое кодирование осуществляется в оптической схеме датчика, т. е. самого узкого звена системы, каким обычно является фото.электрический преобразователь, что исключает источники потерь измерительной информации и улучшает метрологические характеристики измерительного преобразователя в целом. Под многомерным оптическим кодированием следует понимать преобразование входного оптического изображения или световых полей объекта, переносящих изображение, в другое оптическое изображение или другие световые поля, наилучшим образом соответствующие возможностям измерения и передачи полезной информации.  [c.88]

Отраженный от контролируемого объекта свет дифрагирует на. элементах голограммы и восстанавливает в плоскости фото.элементов изображение кодовой маски. С помощью диафрагмы осуществляется выбор из набора кодов, содержащихся в изображении кодовой маски, одного кода числа, равного результату измерения. При изменении положения объекта изменяются также пространственные координаты светового пятна на его поверхности и угол падения на голограмму восстанавливающей световой волны, что приводит к смещению изображения кодовой маски в плоскости фотоэлементов. При этом диафрагма из набора кодов выделит код числа, соответствующий новому положению объекта, фотоэлементы преобразуют световое изображение кода в его электрический аналог, обработка которого может осуществляться на ЭВМ.  [c.90]


При измерении на двойном микроскопе МИС-11 высоты неровностей сначала выбирают по приведенной выше таблице подходящую пару объективов в соответствии с ожидаемыми результатами измерения. Осветителем 12 (рис. 29, е) служит электрическая лампочка 8 В, 9 Вт, которая получает питание от сети переменного тока напряжением 127/220 В через трансформатор, прилагаемый к прибору. Контролируемую деталь 3 кладут на координатный предметный стол 2, фиксируемый винтом 1. Микроскопы устанавливают предварительно на нужном расстоянии от детали 3, перемещая кронштейн 9 по стойке с помощью кольца 11. Фиксация кронштейна осуществляется винтом 10 клеммового зажима. Винтом 8 кремальеры и винтом 6 механизма тонкой наводки перемещают по салазкам 7 в вертикальном направлении микроскопы, добиваясь четкого изображения световой щели на поверхности детали. Это изображение искривляется соответственно неровностям, имеющимся на испытуемой поверхности. Винт 14 служит для установки изображения щели в середине поля зрения окуляра, а кольцо 13 — для регулировки его ширины. Поворотом винтового окулярного микрометра 4 вокруг оси визуального тубуса 5 устанавливают горизонтальную линию перекрестия по общему направлению изображения щели. Вращая барабан окулярного микрометра, подводят горизонтальную линию перекрестия до касания ее с вершиной выступа неровности изображения щели (сплошные линии на рис. 29, д). В этом положении делают первый отсчет по окулярному микрометру. Это будет координата линии выступа. Затем смещают ту же линию перекрестия до касания ее с дном впадины (штриховые линии на рис. 27, д). В этом положении делают второй отсчет по окулярному микрометру. Выступ и впадину измеряют, естественно, по одну сторону изображения щели. Разность отсчетов, сделанных по выступу и впадине, дает величину 6 искривления изображения щели в делениях круговой шкалы барабана винтового окулярного микрометра. Для того чтобы высоту неровности поверхности выразить в микрометрах, нужно полученную величину искривления щели А умножить на цену деления /д барабана окулярного микрометра, т. е. определить произведение  [c.110]

НИИ 4 автоматического ключа реверсивного двигателя 5 для выключения двигателя при поступлении на вход одновибратора полезного сигнала или помех реле времени 6 для включения звукового или светового сигнала 7 импульсного вольтметра 12 для измерения напряжения сигналов до ограничения и после него, что позволяет правильно настроить сигнализирующее устройство по коэффициенту оптического отражения поверхности образца в начале испытания. Кроме того, в электрическую схему устройства входят каскад питания устройства сигнализации 8, лампа накаливания 9 со стабилизатором 10, реверсивный двигатель поискового механизма 11 и каскад питания поискового механизма 13. Отраженный поверхностью вращающегося образца свет  [c.186]

Так как при массовой проверке деталей не требуется определять действительное значение параметра, а требуется определить только нахождение его в поле допуска, результат измерения головкой карданного типа фиксируется в виде световых сигналов условных цветов. В электрическую сигнализационную схему карданной измерительной головки включаются две лампы различной мощности, например, 3 св. (зеленая) и 15 св. (красная). При разомкнутом контакте (детали б и 7 на фиг, 74) обе лампы включены последовательно, и поэтому горит лампа меньшей мощности (зеленая).  [c.268]

С середины XIX в. приборы для измерения электрических и световых величин стали все более прочно входить в практику. В конце XIX в. и начале XX в. были открыты новые физические явления, появились новые виды измерений и соответствующие приборы.  [c.352]

Международная система единиц по ГОСТ 9867—61 введена с 1 января 1963 г. Эта система связывает единицы измерения механических, тепловых, электрических, магнитных и других величин. В Международной системе единиц приняты шесть основных единиц — метр, килограмм, секунда, ампер, кельвин, моль, кандела две дополнительные единицы — радиан и стерадиан и 25 важнейших производных единиц (табл. 1-1). Более полные данные fo единицах Международной системы,применении единиц других систем и внесистемных единиц приведены в ГОСТ по отдельным видам измерений ГОСТ 7664—61 Механические единицы , ГОСТ 8550—61 Тепловые единицы , ГОСТ 8033—56 Электрические и магнитные единицы , ГОСТ 7932—56 Световые единицы , ГОСТ 8849—58 Акустические единицы .  [c.5]

Аналогия строится в конечных областях, на контуре которых располагается пленка. Если решается уравнение Пуассона, то контур области представляет собой контур отверстия в верхней стенке коробки, в которой затем создается избыточное давление р воздуха. Прогиб мембраны обычно измеряется механически с помощью микрометрического винта, укрепленного в координатнике, причем момент касания щупа определяется по замыканию электрической цепи через щуп и жидкую пленку. Остроумный способ определения линий равных углов наклона пленки основан на фотографировании вдоль оси z отражения в пленке сети координат, расположенной в перпендикулярной плоскости X, у. Наиболее точный из известных способов измерений заключается в определении направления тонкого светового луча, отраженного от пленки.  [c.265]

Радиометрия основана на просвечивании изделия ионизирующим излучением и преобразовании плотности потока или спектрального состава прошедшего излучения в электрический сигнал. В качестве источника излучения применяют в основном радиоизотопы (у-излуче-ние), ускорители, реже - рентгеновские аппараты и источники нейтронов. В качестве детекторов используют ионизационные камеры, газоразрядные счетчики (пропорциональные и счетчики Гейгера), фиксирующие ионизацию или газовый разряд под действием ионизирующего излучения, а также сцинтилляционные счетчики, основанные на измерении с помощью электронных умножителей интенсивности световых вспышек в люминофорах.  [c.349]


Известно, что точность всех электрических измерений ограничивается уровнем флуктуаций тока и напряжения в измерительном устройстве, определяемом как внутренними электрическими шумами самого устройства, так и флуктуациями измеряемой величины. В фотоэлектрических уст1)ойствах электрические шумы также ограничивают их точность и предел чувствительности. Хотя разработаны методы, позволяющие с помощью фотоэлектронных приборов измерять довольно слабые световые потоки (например, одноэлектронный метод), однако не следует думать, что любой сколь угодно малый световой сигнал может быть фотоэлектрически зарегистрирован и измерен. Электрические шумы, природа которых может быть весьма различна, ограничивают возможность измерения сверхслабых световых сигналов. Из всех возможных причин, влияющих на предел чувствительности фотоэлектрических измерений, коротко остановимся на двух, связанных с тепловым движением электронов и конечностью заряда электрона.  [c.176]

Наибольший интерес представляют прямые методы наблюдения и исследования дислокаций, их скоплений и точечных дефектов. К ним относятся исследования с помощью ионного проектора, рентгеновской топографии и прямые световые и электрономикроскопические исследования. Прямые методы дают наиболее ценную информацию о дефектах в кристаллах, однако неприменимы для количественных оценок при изучении металлов, подвергнутых значительной пластической деформации, или технических сплавов сложного состава. В этом случае приходится применять косвенные методы исследования рентгеноструктурный анализ с оценкой формы и интенсивности интерференционных максимумов механические испытания измерение внутреннего трения, электрических и магнитных характеристик.  [c.94]

Шероховатость поверхности измеряется также профилографическим методом. Поверхность детали вдоль определенной линии точка за точкой прощупывается очень тонким штифтом (радиус 2-10 мкм) при незначительном давлении. Щуп прослеживает все неровности ис- следуемой поверхности, и путь его движения передается механикооптической и электрической системой в виде пропорционально увеличенного сечения профиля. Имеются также профилографы со световым указателем неровностей поверхности. При измерении щуп от датчика импульсов приводится в колебательное движение, которое заставляет его быстро перескакивать с одной точки измерения на другую. Пределы измерения при этом способе составляют 0,1-125 мкм. Измерение и исследования микронеровностей поверхности образцов могут также проводиться с помощью электронного микроскопа.  [c.225]

Известны попытки применить эллипсометрию для температурных измерений в газоразрядной плазме [4.35]. Поскольку в процессе плазменного воздействия происходит модификация и зарядка поверхности, требуется выделять ту часть сигнала, которая связана с температурой. Для этого необходимы дополнительные данные о состоянии поверхности в разряде, что существенно усложняет задачу. В частности, не изучено влияние стационарных электрических полей, возникающих в приповерхностном слое образца, на эллипсометрические параметры. Толщина этого слоя в полупроводниковом кристалле сравнима с глубиной формирования отраженного светового пучка. Аналогом измерений в плазме является электроотражение света от поверхности, к которой приложен потенциал относительно опорного электрода.  [c.106]

Большое разнообразие явлений, с которыми приходится сталкиваться, определяет широкий круг величин, подлежащих измерению. Если в конце ХУП1 в. при установлении метрической системы мер существовала необходимость лишь в измерении длины, площади, объема, вместимости и веса, то в настоящее время круг величин, подлежащих измерению, значительно расширился, включив механические, тепловые, электрические, световые и другие величины.  [c.4]

Устройства тепловой автоматики и измерений должны иметь резервное электрическое питание с автоматическим и ручны.м переключением. Для контроля напряжения должна быть осуществлена световая и звуковая сигнализация.  [c.198]

Оптика движущихся тел является другой областью оптики, не затронутой в настоящей книге. Как и квантовая теория, она превратилась в широкий независимый раздел знания. Первым наблюденным явлением в этой области, отмеченным в 1728 г. Джеймсом Брэдли (1692—1762 гг.) [55], было явление аберрации неподвижных звезд , т. е. обнаружение небольшого различия их угловых положений, связанного с движением Земли относительно направления светового луча. Брэдли правильно понял это явление, связав его с конечностью скорости распространения света, в результате чего ему удалось определить последнюю. Мы уже упоминали и другие явления, относящиеся к оптике движущихся сред Френель первый заинтересовался увлечением света движущимися телами и показал, что световой эфир участвует в движении со скоростью, которая меньше скорости движущихся тат затем Физо экспериментально продемонстрировал такое частичное увлечение света в опытах с текущей водой. Христиан Допплер (1803—1853 гг.) [56] исследовал эффекты, связанные с двнже1П1ем источника свста или наблюдателя, и сформулировал хорошо известный принцип, названный его именем. До тех пор, пока теория упругого светового эфира считалась верной, а область исследований и точность измерений были достаточно ограниченными, идея Френеля о частичном увлечении света была способна объяснить все наблюдаемые явления. Электромагнитная же теории света встретилась з.цесь с трудностями фундаментального характера. Герц первый попытался обобщить уравнения Макс-ветла на случай движущихся тел. Однако его формулы противоречили некоторым электромагнитным и оптическим измерениям. Огромную роль сыграла теория Гендрика Антона Лоренца (1853—1928 гг.), который предположил, что эфир в состоянии абсолютного покоя является носителем электромагнитного поля, и вывел свойства материальных тел из взаимодействия элементарных электрических частиц — электронов. Е.му удалось показать, что фре-нелевские коэффициенты увлечения света можно получить из его теории и все известные в то время (1895 г.) явления можно объяснить на основании его гипотезы [57]. Однако в результате колоссального увеличения точности измерения оптических путей, достигнутого с помощью интерферометра Альберта Абрагама Майкельсона (1852—1931 гг.), возникла новая трудность оказалось невозможным обнаружить эфирный ветер , наличие которого следовало из теории неподвижного э ира [58, 59). Эта трудность была преодолена в 1905 г, Альберто.м Эйнштейном [60] в его специальной теории относительности.  [c.21]

Анализируемая вода поступает в кювету 3. В эту же кювету автоматически вводится определенный объем реактива. Степень ослабления светового потока, проходящего через кювету от источника 1, зависит от интенсивности окраски пробы, определяющейся концентрацией растворенного кислорода. Таким образом, световой поток, падающий на фоторезистор 7, а следовательно, и электрическое сопротивление последнего находятся в однозначной зависимости от измеряемой величины — кислородосодержания. Для автоматического измерения значения электрического сопротивления используется мостовая измерительная схема.  [c.640]

Электродинамика (и оптика) движущихся сред, развитая Ло-рентцом, есть часть его общей электронной теории, в силу которой все электромагнитные свойства вещества обусловливаются распределением электрических зарядов и их движением внутри неподвижного эфира. В качестве формул преобразования координат при переходе от одной инерциальной системы к другой сохраняются преобразования Галилея, и, поскольку отрицается принцип относительности, уравнения электродинамики Лорентца не являются инвариантными по отношению к этим преобразованиям. Теория Лорентца означала очень крупный шаг вперед и разрешала большой круг вопросов, представлявших значительные теоретические трудности. В случае оптических явлений она совпадает с теорией Френеля и также приводит к представлению о частичном увлечении световых волн. По теории Лорентца движение вещества есть движение молекул и связанных с ними зарядов в неподвижном эфире, и учет этого движения показывает, что в среде, движущейся со скоростью V, свет распространяется со скоростью q + (1 — in )v, где l — скорость света в неподвижной среде. Таким образом, теория Лорентца приводит к формуле частичного увлечения Френеля, хорошо подтвержденной тщательными измерениями.  [c.449]


В настоящее время на основе внешнего и внутреннего фотоэффекта строится бесчисленное множество приемников излучения, преобразующих световой сигнал в электрический и объединенных общим названием — фотоэлементы. Они находят весьма широкое применение в технике и в научных исследованиях. Самые разные объективные оптические измерения немыслимы в наше время без применения того или иного типа фотоэлементов. Современная фотометрия, спектрометрия и спектрофотометрия в широчайшей области спектра, спектральный анализ вещества, объективное измерение весьма слабых световых потоков, наблюдаемых, например, при изучении спектров комбинационного рассеяния света, в астрофизике, биологии и т. д. трудно представить себе без применения фотоэлементов регистрация инфракрасных спектров часто осуществляется специальными фотоэлементами для длинноволновой области спектра. Необычайно широко используются фотоэлементы в технике контроль и управление производственными процессами, разнообразные системы связи от передачи изображения и телевидения до оптической связи на лазерах и космической техники представляют собой далеко не полный перечень областей применения фотоэлементов для решения разнообразнейших технических вопросов в,современной промышленности и связи.  [c.649]

В зависимости от материала фотокатода и материала колбы фотоэлемента их можно применять в диапазоне 0,2—1,1 мкм. Их интегральная чувствительность лежит в пределах 20—100 мкА на 1 лм светового потока, а термоэмиссия — в пределах 10 — 10" А/см . Очень важным достоинством вакуумных фотоэлементов является их высокое постоянство и линейность связи светового потока с фототоком. Поэтому они длительное время преимущественно использовались в объективной фото.метрии, спектрометрии, спектрофотометрии и спектральном анализе в видимой и ультрафиолетовой областях спектра. Главным недостатком вакуумных фотоэлементов при световых измерениях следует считать малость электрических сигналов, вырабатываемых этими приемниками света. Последний недостаток полностью устраняется в фотоэлектронных умножителях (ФЭУ), представляющих как бы развитие фотоэлементов. ФЭУ были впервые построены в 1934 г.  [c.650]

Оптическое кодирование может быть непрерывным (аналоговым) или дискретным (цифровым). В последнем случае в дополнение к уже перечисленным операциям оптическое кодирование должно включать квантование изображения или световых полей объекта, т. е. разделение на ряд отличных друг от друга в ггространстве по яркости или по иному признаку дискретных элементов, каждому из которых может быть приписан соответствующий кодовый знак. Таким образом, под цифровым многомерным кодированием надо понимать квантование входного изображения или световых полей объекта и последовательное пространственное перераспределение. элементов квантования по определенному закону (коду). Цифровое оптическое кодирование дает возможность получить результат измерения в сжатой цифровой помехоустойчивой форме и исключить процесс развертки изо(5ражения или световых полей с целью преобразования их в одномерный электрический сигнал. При этом роль фото.элект-рического преобразователя датчика сводится лишь к считыванию результатов измерения, полученных в оптике датчика в виде пятен светового кода. Рассмотрение свойств голографического процесса показывает, что голограмма может быть идеальным элементом для создания кодирую-  [c.88]

Кроме шумов, обусловленных тепловым движением электронов в проводниках, существует шум, создаваемый тепловым движением электронов в фотокатоде. При таком движении электроны будут самопроизвольно вырываться из катода, создавая дополнительный фототок, который называют темновым током, т. е. не связанным с освещением фотокатода. Темповой ток можно измерить при отсутствии светового сигнала и скомпенсировать его обычными методами. Но флуктуации темпового тока создают дополнительные шумы и этим тоже ограничивают чувствительность измерений. Это явление носит название дробового эффекта для термоэлектронной эмиссии. Вторая причина дробового эффекта связана с тем, что электрический ток образован перемещением конечных элементарных зарядов. Если сила измеряе.мого фототока /, то число электронов, вылетающих из фотокатода каждую секунду, равно =// . Это число подвержено флуктуациям, так что сила тока лишь в среднем остается постоянной.  [c.177]

Поскольку напряженность электрического подя световой волны увеличивается с ростом интенсивности, можно было ожидать, что это будет сопровождаться увеличением максимальной энергии фотоэлектронов. Если же поддерживать постоянной интенсивность света, но увеличивать его частоту, то при достаточно высоких частотах энергия фотоэлектронов должна была бы быть меньшей, так как, обладая массой (инерцией), они будут слабее реагировать на воздействие полей более высоких частот. Измерения дали прямо противоположные результаты Максимальная энергия фотоэлектронов линейно увеличивалась с ростом частоты света и не зависела от интенсивности световой волны. Эти данные никак не могли найти объяснеше в волновой теории света.  [c.118]

В 10—30-х годах текущего столетия были опробованы методы микроскопического анализа изучение под микроскопом поперечного шлифа электролитически покрытой поверхности, измерение под микроскопом неровностей поверхности по репликам из желатина и т. д. Предпринимали попытки косвенной оценки неровностей поверхности по потерям энергии маятника при торможении его неровностями поверхности во время качания, по разности размеров деталей до и после доводки, по предельному углу регулярного отражения света, по теневой картине поверхности на экране с увеличенными изображениями поверхностных дефектов, по расходу воздуха через участок контакта сопла с испытуемой поверхностью, по четкости изображения растра на испытуемой поверхности или на экране после отражения от нее светового пучка, по электрической емкости контактирующей пары испытуемая поверхность — диэлектрик с нанесенным слоем серебра , по нагрузке на индентер при определенном его сближении с испытуемой поверхностью, по изображению мест плотного соприкосновения призмы с неровностями поверхности и т. д. Были опробованы методы исследования рельефа поверхности с помощью стереофотограмм и стереокомпаратора. На производстве в этот период доминировали органолептические методы контроля визуальное сравнение с образцом, сравнение с помощью луп, сравнение на ощупь ногтем, краем монеты и т. п. В 30-х годах был предложен и реализован в двойном микроскопе метод светового сечения (Линник, Шмальц), а также метод микроинтерференции и основанные на нем микроинтерферометры, сочетающие схемы микроскопа и интерферометра Майкельсона. В этот же период  [c.58]

В ряде работ отмечается, что начальные изменения микростроения при старении не могут быть разрешены в световом микроскопе, тогда как именно на этих ранних стадиях наиболее значительно меняется поведение металлов и сплавов при механических испытаниях [106]. Для обнаружения ранних стадий процессов старения наиболее чувствительным является метод измерения электрического сопротивления материала. Как известно, удельное электросопротивление металла или однофазного сплава является функцией общего числа и распределения точечных дефектов, дисклокаций и растворенных атомов. Большие изменения удельного электросопротивления можно однозначно связывать с образованием скоплений растворенных атомов или выделений.  [c.220]

Указанные единицы совпадают с единицами, введенными соответствующими государственными стандартами а) для механических единиц (ГОСТ 7664—61) — метр-килограмм-секунда (система МКС) б) для тепловых единиц (ГОСТ 8550—61) — метр-килограмм-секунда-градус Кельвина (система МКСГ) в) для электрических и магнитных единиц (ГОСТ 8033—56 ) — метр-килограмм-секунда-ампер (система МКСА) г) для световых единиц (ГОСТ 7932—56) —. метр-секунда-свеча (система МСС). Образование кратных и дольных единиц измерения производится в соответствии с ГОСТ 7663—55.  [c.518]

ПРИЕМНИКИ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ -устройства, предназначенные для обнаружения илц измерения оптического излучения и основанные на пре- образовании энергии излучёняя в др. виды эн гии (тепловую, механическую, электрическую и т. д.), оолм удобные для непосредств. измерения. Они реагируют на интенсивность излучення, усреднённую по нн. периодам колебаний светового поля, т. к. время релаксации приёмника, иезависимо от того, на каком принципе ей основан, определяется процессами переноса и релаксация, к-рне происходят за время, много большее период да колебания светового поля. <  [c.112]

Выполнение колебательной системы, обеспечивающее совпадение узлов колебаний с центром тяжести грузов, и использование системы возбуждения с замкнутым силовым контуром позволяют применять высокоточную аппаратуру для измерения параметров колебаний исследуемой системы. Для этого в нижней части одного из грузов устанавливают решетчатый модулятор фотооптического датчика механических колебаний, предназначенного для определения угла поворота груза. Вращательные колебания груза благодаря изменению интенсивности проходящего через модулятор светового луча преобразуются фотоприемниками датчика в электрические сигналы, которые усиливаются и, в свой очередь, преобразуются в числовые значения амплитуды колебаний. Индикация последних проводится в цифровом виде на табло регистратора и на электронном осциллотрафе, а регистрация - на цифропечатающем устройстве.  [c.322]



Смотреть страницы где упоминается термин Световые и электрические измерения : [c.84]    [c.311]    [c.309]    [c.162]    [c.14]    [c.109]    [c.226]    [c.519]    [c.521]    [c.447]   
Смотреть главы в:

Производство электрических источников света  -> Световые и электрические измерения



ПОИСК



Измерения световые

Электрические измерения



© 2025 Mash-xxl.info Реклама на сайте