Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Характеристика условий нагружения

Характеристика условий нагружения  [c.9]

Введение инвариантного показателя повреждаемости очень важно, так как исходная структура и условия нагружения существенным образом влияют на место зарождения пор в образце. Это обусловливает неоднородность повреждаемости, связанной с порообразованием, а также неоднородность геометрических характеристик вновь образованной поверхности.  [c.134]

Механические свойства сталей и сплавов определяются их химическим составом, структурой и отсутствием или наличием различного типа дефектов. Вьппе бьши рассмотрены основные типы и виды дефектов, характерные для сварных соединений. В настоящем разделе остановимся на рассмотрении ряда особенностей, связанных с неоднородностью химического состава и структуры сварных соединений, которые определяют механические характеристики металла шва, зоны термического влияния, зоны сплавления и других локальных участков. При этом необходимо иметь в виду, что развитие дефектов происходит именно в данных участках, а работоспособность сварных соединений определяется комплексом сложных процессов, связанных с механическими характеристиками металла различных зон, геометрическими размерами последних, видом и условиями нагружения, типом дефекта и др.  [c.13]


Значения характеристик разрушения зависят от уровня прочности и структуры сплава, геометрии образца и трещины, а также условий нагружения. Представленные в табл. 3.54—3.58 данные получены на образцах со сквозной трещиной. Вязкость разрушения при плоском напряженном состоянии К с существенно зависит от геометрии образца, в частности от ширины пластины. Ориентировочно значение величины пропорционально (В—ширина пластины), однако оно возрастает с увеличением ширины пластины не строго пропорционально J В, а в меньшей степени.  [c.83]

Циклов. Другим способом испытания для определений характеристик малоциклового сопротивления является нагружение с постоянной амплитудой полной деформации, рассматриваемое как жесткое , так как. образование пластической деформации ограничено задаваемой полной деформацией. Такие условия нагружения возникают около зон концентрации напряжения, около дефектов, при неравномерном распределении температуры по сечениям. Эти условия обеспечивают также стационарность процесса деформации в смысле отсутствия одностороннего их накопления.  [c.79]

Таким образом, для двух шероховатых поверхностей приведенная комплексная характеристика шероховатости поверхности А зависит от прочности молекулярной связи То в зоне фактического касания, физико-механических свойств пары трения Г и условий нагружения Рс-  [c.58]

При Оценке коррозионного растрескивания следует помнить о возможном влиянии на получаемые характеристики условий испытания (скорость нагружения, форма и размеры образца и пр.). Поэтому сравнивать различные сплавы или их обработку можно только при полной идентичности условий испытания.  [c.41]

Соотношение (1.21) указывает на уменьшение доли периода роста трещины в долговечности сварного соединения по мере возрастания числа циклов нагружения до разрушения соединения. Относительная доля периода роста трещины в периоде нагружения элемента конструкции до ра.зру-шения существенно зависит от условий нагружения элемента конструкции, вида материала и состояния поверхности, а также концентрации напряжений. При ВЫСОКО концентрации напряжений доля периода роста трещины в общей долговечности образца или элемента конструкции может оказаться значительной. Возникает естественный вопрос о том, в какой мере соотношение между периодами зарождения и роста трещины может быть использовано для характеристики поведения материала при циклическом нагружении. Указанная информация позволяет установить, насколько эти два разных способа накопления повреждений материала взаимосвязаны или зависимы между собой для разных условий нагружения и их концентрации в районе очага разрушения.  [c.61]


Сформулированные принципы неопределенности показывают, что момент разрушения элемента конструкции с трещиной характеризуется достижением в материале определенного уровня энергии, который остается неизменным при сохранении ведущего механизма раскрытия берегов трещины в момент ее страгивания. Однако при этом возникает такая же проблема с оценкой уровня этой энергии, как и при анализе процесса роста трещин. Величина предельного уровня может быть охарактеризована через механические характеристики, которые зависят от условий нагружения элемента конструкции. Однако и в этом случае приходится вводить представление об интегральных характеристиках предельного состояния материала, достигаемого при многопараметрическом внешнем воздействии.  [c.101]

Соотношение (2.28) показывает, что при различном сочетании скорости деформации и температуры нагружения, коп орые весьма далеки от тестовых (стандартных) условий нагружения, могут быть реализованы такие сочетания, когда поправочные функции будут взаимно компенсировать свое влияние на вязкость разрушения материала. Такая ситуация будет далее рассматриваться как эквивалентная тестовым условиям нагружения материала, а получаемые характеристики разрушения будут эквивалентны таковым, но определенным для тестовых (стандартных) условий нагружения.  [c.117]

Таким образом, предельное состояние элемента конструкции с усталостной трещиной в эксплуатации достигается при некотором уровне эквивалентной вязкости разрушения материала. В результате этого предельная длина трещины может быть отлична от той, что соответствует стандартным условиям испытаний материала. Это отличие полностью определяется величинами поправочных функций на реализуемые условия нагружения. Введение представления об эквивалентных характеристиках материала для описания его поведения в условиях эксплуатации позволяет после разрушения элемента конструкции проводить оценку значимости факторов эксплуатационного воздействия на материал в момент его разрушения.  [c.118]

Скорость роста длинных усталостных трещин зависит от коэффициента интенсивности напряжения (КИН), и между ними установлена S-образная зависимость при неизменном уровне напряжения, которая аналогична зависимости, представленной на рис. 3.1а. Вид и положение кинетической кривой существенно зависят от условий нагружения и геометрии детали. Поэтому далее, рассматривая процесс развития разрушения, мы будем разделять нагружение материала (образец) в тестовых условиях и при многопараметрическом воздействии на деталь в лаборатории, на стенде или в эксплуатации. Тестовые условия используют для определения механических характеристик материала, когда применительно к испытаниям стандартных образцов оговорены их размеры, частота нагружения, температура, степень агрессивного воздействия окружающей среды и прочее. Элементы конструкций, в большинстве случаев, существенно отличаются по геометрии от стандартных образцов, и условия их нагружения, как правило, не соответствуют тестовым условиям опыта.  [c.132]

Условия нагружения элемента конструкции, как правило, могут быть реализованы в широком диапазоне варьирования температуры, частоты нагружения, асимметрии цикла путем силового воздействия на элемент конструкции по нескольким осям при разном соотношении между величинами компонент нагружения и т. д. Реальные условия многопараметрического эксплуатационного нагружения материала, воплощенного в том или ином элементе конструкции, ставят вопрос об использовании интегральной оценки роли условий нагружения в развитии процесса разрушения. В связи с этим необходимо введение представления об эквивалентном уровне напряжения для проведения расчетов с использованием новой характеристики напряженного состояния материала в виде эквивалентного КИН. Использование эквивалентной величины в свою очередь требует получения сведений о закономерностях процесса разрушения в некоторых тестовых или стандартных условиях циклического нагружения материала, в которых осуществлено построение базовой или единой кинетической кривой. Параметры кинетической кривой в стандартных условиях опыта становятся характеристиками только свойств материала. Разнообразие реальных условий нагружения материала, в том числе и влияние геометрии элемента конструкции, рассматривается в условиях подобия путем сведения всех получаемых кинетических кривых к базовой или единой кинетической кривой. Поэтому влияние того или иного параметра воздействия на кинетику усталостной трещины в измененных условиях опыта по отношению к тестовым условиям испытаний может быть учтено через некоторые константы подобия. Они выступают в качестве безразмерного множителя.  [c.190]


Представленные поправки в большинстве случаев характеризуют однопараметрическое изменение условий нагружения. К ним следует отнести в первую очередь асимметрию цикла и частоту приложения нагрузки, которая применительно к элементам авиационных нагрузок меняется в широком диапазоне. Однако в условиях эксплуатации внешнее воздействие на ВС оказывается комплексным и многопараметрическим. В связи с этим необходимо учитывать именно синергетическую ситуацию влияния на поведение материала, как и в случае внешнего воздействия, также необходимо рассматривать несколько факторов, через которые учитывается реакция материала на это воздействие. Поэтому далее влияние основных параметров внешнего воздействия, одновременное изменение которых является типичным для элементов авиационных конструкций и должно быть учтено при моделировании кинетики усталостных трещин, будет рассмотрено после введения еще одной характеристики в кинетические уравнения (5.63) — фрактальной размерности.  [c.254]

Определение поправочных функций на условия циклического нагружения следует проводить с учетом фрактальных характеристик формируемой поверхности разрушения. При прочих равных условиях нагружения, например при двухосном растяжении с разным соотношением главных напряжений, определение поправочной функции следует проводить для одинаковой фрактальной размерности или корректировать получаемое значение поправки в связи с различием фрактальной размерности формируемого рельефа излома от одного испытанного образца к другому.  [c.271]

В условиях опыта изменение размера зоны пластической деформации перед вершиной трещины находилось в прямой и однозначной зависимости от частоты нагружения и температуры. Рассматриваемые результаты эксперимента свидетельствуют о возможности использования известных для многих материалов физических характеристик их поведения в условиях монотонного растяжения для описания распространений усталостных трещин. Существенным моментом введения указанных поправок на предел тек ести материала являлось то, что они использовались в виде сомножителей. Можно считать, что для материалов имеется диапазон совместного изменения частотно-темпе-ратурных условий нагружения, в котором (при прочих равных условиях) в результате взаимного влияния этих факторов не происходит усиления или замедления процесса роста трещины.  [c.353]

Итак, первая серия проведенных экспериментов показала, что технология производства титановых дисков допускает возможность получения даже в пределах одной плавки материала, обладающего разной чувствительностью к условиям нагружения. Причем параметры структуры и механические характеристики у материалов с разной чувствительностью к условиям нагружения находятся в допустимых пределах по Техническим условиям изготовления дисков компрессоров ГТД и могут быть практически одинаковыми. Следует подчеркнуть, что применительно к исследованным дискам работа разрушения, являющаяся одной из основных характеристик, по которой судят о чувствительности материала к хрупкому разрушению, составляла от 10,2 до 19,5 Дж/см , что существенно превышает минимально рекомендуемое значение КСТ, равное 8,0 Дж/см . Причем у всех трех исследованных дисков значения КСТ были близкими. В связи с этим есть основания предполагать, что работа разрушения образца с трещиной не позволяет гарантированно выявлять склонность материала к разрушению по границам фаз.  [c.372]

Лопасти подвергают испытаниям на специаль- ном стенде, воспроизводящем блоки программных i нагрузок, которые эквивалентны условиям нагружения в эксплуатации. Достоверность вводимых величин в эквивалентные характеристики подтверждается опытом эксплуатации в связи с реализуемым ресурсом работы лонжеронов и лопасти в целом, поскольку критерием предельного состояния эксплуатируемых лопастей является не только наличие сквозной несплошности в лонжероне, но и, напри-1 мер, наличие коррозионных повреждений и прочее, j  [c.637]

ЛИЗ напряженного состояния и несущей способности при известных условиях нагружения и известных характеристиках прочности и жесткости. Ухудшение свойств материала в процессе циклического нагружения вызывает всего лишь изменение основных исходных данных для анализа. Дело обстоит так потому, что анализ напряженного состояния требует знания зависимости между напряжениями и деформациями, а анализ несущей способности — знания предельных напряжений или деформаций в зависимости от используемого крите-  [c.88]

Поведение однородного изотропного материала при некотором условии нагружения можно охарактеризовать через поведение этого материала при других условиях при помощи концепций эквивалентного напряжения и эквивалентной деформации ползучести. Итак, необходимо вывести характеристики одноосной ползучести из характеристик ползучести при сдвиге. Формулы для эквивалентного напряжения а и эквивалентной деформации ползучести е " имеют вид  [c.291]

Сплав Условия нагружения Характеристика излома  [c.145]

Как подчеркивалось выше, испытания при неизотермическом нагружении с получением базовых характеристик, необходимых для оценки накопления повреждений, должны проводиться на программных испытательных установках с обратными связями по нагрузкам (деформациям) и температурам. Вместе с тем в практике получили распространение методики термоусталостных испытаний [16, 138, 186, 192, 196, 254, 257, 282] благодаря простоте и близости в ряде случаев условий нагружения и нагрева эксплуатационным. Нагружение на термоусталостных установках осу-  [c.47]


В работах [77, 103—104] охрупчивание металла в процессе усталости исследовалось по изменению таких характеристик, как хрупкая прочность и критическая температура хрупкости, которые определяются при жестких условиях нагружения высокая концентрация напряжений, статическое либо удар-  [c.80]

Уравнения (1.7), (1.8) учитывают влияние на процесс изнашивания условий нагружения ( а), физико-механических свойств (Oj, НВ, Е, j), усталостных (Zo, Сто, t) и фрикционных (/) характеристик, параметров микро- и макрогеометрии (v, Ъ, -R, Лс). Для инженерной практики основные расчетные зависимости (1.7), (1.8) представлены серией ценных номограмм [5].  [c.20]

Предел выносливости не являетея постоянной, присущей данному материалу характеристикой, и подвержен гораздо большим колебаниям, чем механические характеристики при статическом нагружении. Его величина зависит от условий нагружения, типа цикла, в частности, от степени его асимметрии, методики испытания, формы и размеров детали, технологии ее изготовления, состояния поверхности и других факторов.  [c.282]

Для определения прочности при статических HaqjysKax образцы испытывают на растяжение, сжатие, изгиб и кручение. Испытание на растяжение - самый распространенный и экономичный вид испытаний, потому что он дает хорошо воспроизводящиеся характеристики, имеющие четкий физический смысл и воспроизводит условия нагружения металла аппарата, работающего под внутренним давлением. Однородное одноосное напряженное состояние, реализуемое на начальных стадиях испытания, позволяет прямо сравнивать достигнутые напряжения с расчетными напряжениями в конструкциях.  [c.278]

Создание новой техники невозможно без проектировочных и проверочных расчетов на прочность и долговечность, цель которых в конечном итоге - подтверждение правильности выбора материала, размеров элементов конструкций и машин, обеспечивающих их надежную работу в пределах заданных условий нагружения и срока службы. Обычно подобные расчеты выполняют на основании традиционных подходов сопротивления материалов с привлечением дополнительных методов, позволяющих уточнить напряженное состояние в рассчитываемых зонах деталей, и стандартных, как правило, экспериментов для получения нужных характеристик материалов. Однако увеличение мощности, производительности, КПД и других характеристик современной техники, большие габариты, сложные очертания конструкции, недоработанность технологии или случайные условия эксплуатации обусловливают возникновение дефектов, приводящих к нежелательным последствиям. Для учета в расчетах на прочность и долговечность существующих дефектов применяют методы линейной и нелинейной механики разрушения, основанные на анализе напряженно-деформированного состояния в окрестности фронта трещины.  [c.5]

Таким образом, равновесная шероховатость поверхности твердого тела, оцениваемая комплексной характеристикой Л по формуле (1У.ЗО), как и в общем случае (1У.21), зависит от прочности молекулярного взаимодействия в зоне фактического касания То, физико-механических свойств мягкой истирающей поверхности Г и условий нагружения Рс- Формула (1У,30) является частным случаем общей закономерности (1У.21), учитывающей шероховатость двух соприкасающихся поверхностей при трении. Использование формул (1У.21) и (1У.30) позволяетко-личественно оценить шероховатость поверхностей, возникающую после приработки в стационарных условиях трения, а такжеопределить положение точки минимума на кривой зависимости коэффициента трения от степени шероховатости, оцениваемой комплексным критерием А.  [c.60]

Интересны также данные, полученные Б. А. Дроздовским с сотрудниками по влиянию газонасыщенного слоя на долговечность в условиях двухосного растяжения. Они показали, что наличие газонасыщенного слоя на поверхности сплава ВТ14 в 2,5 раза снижает долговечность при проведении испытаний в плосконапряженном состоянии, которое наиболее часто реализуется в конструкциях. В связи с этим некоторые общие выводы о благотворном влиянии газонасыщенного слоя на характеристики работоспособности, приведенные в работах [90], носят частный характер и не учитывают все возможные условия нагружения.  [c.136]

Уравнение (4.5) при всей своей привлекательности имеет общий недостаток — в него введена предельная величина КИН (вязкость разрушения), что для его практического использования при анализе процесса усталостного разрушения элементов авиационных конструкций вносит существенную неопределенность. Как было показано в главе 2, предельное состояние элемента конструкции с усталостной трещиной определяется широким спектром величин вязкости разрушения, поскольку она существенно зависит от условий нагружения. Не менее сложным является вопрос об определении величины показателя степени в соотношении (4.4). Он не может быть рассмотрен как интегральная характеристика затупления трещины по некоторому отрезку ее фронта с переменной кривизной и ориентировкой направления локального подрастания трещины. Тем более что параметры зоны затупления (зоны вытягивания) — ее высота и ширина — тоже существенно зависят от условий нагружения, например от температуры (см. главы 2 и 3). Наконец, как было показано выше, пластическое затупление вершины трещины происходит в каждом мезотуннеле индивидуально . Оно существенно зависит от того, каким образом сформированы перемычки между мезотунне-лями. Перемычки не только определяют условия раскрытия вершины мезотуннеля, но и влияют на величину скорости роста трещины, при которой  [c.189]

Стандартные механические характеристики материала определяют в тестовых условиях нагружения. Распространить их на многопараметриче-  [c.235]

Этот феномен подробно исследован на процессе замедленного хрупкого разрушения сталей [ИЗ]. Только после определенного уровня снижения когезивной прочности наблюдается чувствительность границ зерен к растяжению с низкой скоростью, и трещина распространяется по границам зерен квазихрупко. Низкая скорость деформации при растяжении является методом выявления существующей чувствительности границ к условиям нагружения, а не фактором или условием, вызывающим эту чувствительность. При этом такие механические характеристики, как пределы прочности и текучести, удлинение и сужение у сталей, проявляющих и не проявляющих чувствительности к низкой скорости деформации, не имеют принципиального различия.  [c.373]

На величины q и влияет большое число факторов форма надреза, условия нагружения, размер образца, температура испытания, частота нагружения, размер зерна, характеристики прочности и пластичности данного металла и т. д. Поэтому указывают [2] лишь приближенные значения для некоторых групп материалов. Так, для чугуна и некоторых цветных металлов величина q близка к нулю для углеродистых сталей с временным сопротивлением до о-в= 000-7--Н1200 МН/м2 (100-,120кгс/ мм= ) величина q возрастает по мере увеличения временного сопротивления (рис. 64) [2].  [c.124]

Некоторые из своеобразных характеристик распространения области разрушения у композитов имеют неносредствен-ное отношение к концепции предварительного неразрушающего нагружения (под которым понимается нагружение элемента конструкции, не приводящее к исчерпанию его несущей способности). Имеется в виду такая особенность композитов, как рост трещины в одном из нескольких возможных нанравлений в зависимости от размеров концентратора напряжения и условий нагружения (статическое или циклическое). Основные принципы метода предварительного нераз-рушающего нагружения можно сформулировать следующим образом. Если задан некоторый элемент конструкции, обладающий определенным статистическим распределением дефектов, то можно изменить это распределение, используя неразрушающее нагружение. Таким образом, по существу, можно обеспечить отсутствие в конструкции дефектов, превышающих своими характерными размерами некоторый предел. После такого нагружения, основываясь на максимальных начальных размерах дефекта, можно предсказывать время усталостного нагружения конструкции, когда трещина будет расти устойчиво.  [c.98]


Размах деформаций, создаваемых в испытуемом образце (или во Зникающих в детали, например в кромке лопатки турбины), определяется жесткостью нагружения, величиной М = тах т]П И физическими свойствами материала (а, Е). При этом в одинаковых условиях нагружения (по жесткости, температурному циклу) величина размахов деформации может существенно различаться. Примером могут служить результаты иопы-тания трех сплавов (рис. 36), из которых изготовляют детал,п камер сгорания. Сплавы ХН60ВТ и ХН50ВМТЮБ одного класса некоторое преимущество последнего сплава объясняется его более высокими характеристиками при нижней температуре цикла (табл. 5). По расположению кривой термической уста-  [c.61]

Таким образом, при циклическом упруго-пластическом деформировании аустенитной стали Х18Н10Т развитие процессов деформационного старения зависит от условий нагружения (температура испытания, уровень нагрузки и форма цикла). При испытании в условиях интенсивного деформационного старения (650° С) процессы упрочнения и охрупчивания материала связаны с образованием карбидной фазы (в основном карбида МегзСб), при других температурах нагружения (например, 450° С) процессы упрочнения и изменения пластичности материала могут быть связаны с формированием блочной структуры. При этом карбидообразование протекает менее интенсивно и существенно зависит от формы цикла (причем в отличие от испытаний при 650° С при 450° С наблюдается в данной стали преимущественно карбид МеС). Развитие карбидообразования и формирования блочной структуры в зависимости от уровня нагрузки при 450° С, так же как и при 650° С, может приводить к возникновению хрупких состояний, и излом при этом носит хрупкий характер. В связи с изложенным, наблюдающееся изменение циклических характеристик (ширина петли гистерезиса, односторонне накапливаемая деформация, пре-де.л текучести и др.) при температуре 650° С может быть связано в основном с развитием деформационного старения (выпадением карбидных частиц), а при 450° С — с формированием блочной ( решетчатой ) структуры.  [c.71]

Этот эффект можно использовать в случае прогнозирования долговечности конкретных конструктивных элементов при нестационарном режиме нагруя ения [18]. Из приведенных выше данных видно, что величина неупругой деформации за цикл Ае является характеристикой интенсивности накопления усталостного повреждения в конкретном металле при заданных условиях нагружения й может исполь-  [c.8]


Смотреть страницы где упоминается термин Характеристика условий нагружения : [c.236]    [c.232]    [c.97]    [c.443]    [c.55]    [c.30]    [c.101]    [c.190]    [c.235]    [c.468]    [c.30]    [c.8]   
Смотреть главы в:

Методика усталостных испытаний  -> Характеристика условий нагружения



ПОИСК



Влияние условий нагружения на упруго-гистерезисные характеристики резин

Влияние условий нагружения на усталостные характеристики слоистых пластиков

Нагружение Условия

Условие на характеристике



© 2025 Mash-xxl.info Реклама на сайте