Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кинетика коррозии в воздухе

КИНЕТИКА КОРРОЗИИ В ВОЗДУХЕ  [c.120]

Графики кинетики коррозии железа и сталей в расплавах хлоридов имеют линейный ход (рис. 295 и 296). Некоторое отклонение графиков от линейного хода на их начальных участках (рис. 296) вызвано повышенными скоростями коррозии сталей в начальный момент, обусловленными тем, что при погружении образца в расплав он покрываемся коркой застывшей соли, под которой имеется воздух, окисляющий поверхность металла. По расплавлении этой застывшей корки идет растворение окисной пленки, которое протекает быстрее, чем коррозия металла. После полного растворения  [c.410]


Схема установки для изучения кинетики газовой коррозии металлов в воздухе по привесу образцов приведена на рис. 229. Установка состоит из вертикальной муфельной электропечи /, аналитических весов 8 и изолирующего экрана 7 для предотвращения теплового воздействия на аналитические весы. Испытуемый образец 2 подвешивается к чашке аналитических весов на тонкой нихромовой проволоке 6, пропущенной через отверстие в изолирующем экране и в крышке 5 электропечи, Те.мпература в печи определяется термопарой 3, соединенной с терморегулятором 4.  [c.351]

Рассматриваемые установки можно использовать для изучения кинетики коррозии металла в среде продуктов сгорания топлива или воздуха, а также под влиянием золы топлива.  [c.115]

ФреттинГ Коррозия осуществляется также в вакууме, в среде кислорода, азота и гелия. Интенсивность изнашивания при фреттинг-коррозии в атмосфере воздуха выше, чем в вакууме и в среде азота, а в кислороде больше, чем в гелии. Если бы интенсивность изнашивания определялась только силами трения, то она была бы выше в вакууме, чем на воздухе, поскольку в вакууме силы трения значительно больше. С учетом изложенных обстоятельств можно сделать вывод, что существенную роль в процессе фреттинг-коррозии играет окисление поверхностей трения или металлических продуктов разрушения. Вместе с тем на кинетику реакции окисления влияет и механический фактор, о чем свидетельствует хотя бы появление при фреттинг-коррозии окислов кадмия, отличных от ранее известных окислов этого металла. Таким образом, фреттинг-корро-зия представляет собой вид разрушения металлов и их сплавов в мало- и неагрессивных коррозионных средах под одновременным воздействием механических и химических факторов.  [c.219]

Поверхность металла в любой среде, кроме высокого вакуума, покрыта слоем адсорбата, оказывающего влияние на кинетику коррозии. Как будет показано в гл. III, IV и VI, слой этот может либо ускорить, либо замедлить коррозию в зависимости от конкретной среды, внешних условий и природы металла. На воздухе поверхность металла адсорбирует главным образом кислород и водяной нар. Адсорбционный слой меняет реакционную способность поверхности металла и, в частности, кинетику окисления его.  [c.57]

Пример. При исследовании кинетики газовой коррозии железа Армко (0,02% С, 0,014% Мп) в воздухе при 400°С получены опытные данные, приведенные ниже.  [c.18]


Рис. 14. Схема установки для исследования кинетики газовой коррозии металлов в воздухе при высоких температурах Рис. 14. Схема установки для исследования <a href="/info/543124">кинетики газовой коррозии металлов</a> в воздухе при высоких температурах
Высокая коррозионная активность по отнощению к металлам присуща всем водосодержащим жидкостям. Согласно существующим представлениям [21], коррозия в водосодержащих жидкостях, насыщенных воздухом, является электрохимическим процессом его кинетика определяется скоростями окисления металла и восстановления кислорода, которые могут изменяться в зависимости от состава и pH жидкости, скорости ее движения и температуры.  [c.288]

Кинетика высокотемпературной коррозии котельных сталей в продуктах сгорания природного газа как в лабораторных, так и в промышленных условиях довольно хорошо изучена. Компонентами в продуктах сгорания газа, которые наибольшим образом влияют на интенсивность коррозии, являются кислород и водяной пар. Концентрация первого существенным образом зависит от режима сгорания топлива (от коэффициента избытка воздуха), а количество водяного пара главным образом определено составом сжигаемого топлива. С увеличением концентрации кислорода в продуктах сгорания улучшаются условия его транспорта к реакционной поверхности, и тем самым процесс коррозии интенсифицируется. Определенное влияние на характер коррозии металла в продуктах сгорания газа оказывает и концентрация водяного пара. Это особенно касается коррозии при температуре выше 570 °С, когда существование водяного пара в окружающей среде способствует образованию на поверхности стали вюстита, т. е. возникновения трехслойной оксидной пленки. Как отмечено ранее, в этой температурной области окисление железа протекает более интенсивно, чем в условиях, когда на поверхности металла возникает двухслойный оксид.  [c.133]

При проведении испытаний в растворе, содержащем кислород, концентрация последнего с течением времени уменьшается. Кислород расходуется при коррозии испытуемых образцов и стенок автоклава. Зная кинетику выгорания кислорода, можно произвести расчет времени работы автоклава в тех или иных пределах концентрации кислорода и указать достаточно узкие пределы концентрации кислорода, при которых автоклав работает подавляющую часть времени. Так, при насыщении раствора в автоклаве воздухом через каждые 144 ч автоклав 75,5 % времени работает при содержании кислорода в растворе 0,1-0,2 мг/л. При насыщении раствора воздухом через каждые 40 ч 50 % времени испытания проходят при концентрации кислорода в электролите 0,2-0,4 мг/л и 22,5 % - при 0,4-1,0 мг/л.  [c.150]

Коррозионные процессы, протекающие с кислородной деполяризацией, обычно наблюдаются в нейтральных средах или при небольшом смещении pH в кислую или щелочную область. Вследствие малой растворимости кислорода в электролитах и незначительной скорости его диффузии характерной особенностью этого вида коррозии является то, что скорость коррозионного процесса зависит в основном от концентрационной поляризации. В отличие от коррозионных процессов, протекающих с водородной деполяризацией, на скорость коррозии с кислородной деполяризацией значительное влияние оказывают перемешивание, повышение температуры и другие факторы, способствующие ускоренной диффузии. Наличие в металлах примесей, понижающих перенапряжение ионизации кислорода, не оказывает существенного влияния на скорость коррозионного процесса. При интенсивном перемешивании или слишком тонких слоях электролита, контактирующего с воздухом, диффузионная кинетика не имеет решающего влияния. В этом случае на скорость коррозии оказывает влияние перенапряжение ионизации кислорода и все связанные с ним вторичные явления.  [c.23]


Кинетика процесса разрушения основного металла определяется скоростью отдельных стадий этого процесса, в том числе скоростью растворения металла в горячих зонах и его отложения в холодных. Скорость коррозии зависит также от температуры, давления и скорости циркуляции жидкого металла. Иногда наблюдается избирательное растворение в жидком металле одного или нескольких компонентов сплава, сопровождаемое образованием язв или появлением межкристаллитной коррозии. Наличие в жидком металле оксидов, нитритов и других соединений, полученных при контакте его с воздухом или другими газами, оказывает отрицательное влияние на коррозионную стойкость металлоконструкций.  [c.542]

Кинетику окисления всех сплавов исследовали при температурах 900, 1000, 1100 и 1200" в атмосфере воздуха и продуктов сгорания городского газа с коэффициентом избытка воздуха 0,8 и 1,5. Для уточнения влияния коэффициента избытка воздуха а определяли скорость коррозии всех сплавов за т= 1 час при а = 1,0 и темпера- с2 турах 900, 1000 и 1100 и 1200= С.  [c.23]

Коррозия металла при его нагревании в печах — это чисто химический процесс. В результате химического взаимодействия железа с кислородом воздуха на его поверхности образуется слой окислов — окалина. Отношение объема образующегося окисла к объему исходного металла (железа) больше единицы, или, иными словами, слой продуктов коррозии (окислов) оказывается сплошным. Поэтому кинетика роста пленки окислов определяется скоростью диффузии молекул кислорода в слое  [c.29]

При коррозии металлов в природных и искусственных средах возможны катодные процессы с последовательным или параллельным восстановлением кислорода и ионов водорода. Кинетика этих процессов зависит от природы металла, свойств электролита и других факторов и определяется перенапряжением кислорода и водорода в каждом конкретном электролите. Процессы с одновременным участием кислорода и ионов водорода наблюдаются при коррозии металлов в электролитах, контактирующих с воздухом. Последовательное восстановление сначала кислорода, затем ионов водорода характерно для герметичных замкнутых объемов, не контактирующих с воздухом после полного расхода кислорода процесс продолжается с выделением водорода.  [c.31]

Влияние кислорода. Скорость коррозии металлов в нейтральной среде существенно зависит от концентрации растворённого в коррозионной среде кислорода, который обеспечивает протекание катодного процесса. Источником кислорода в подавляющем большинстве случаев является воздух. Влияние кислорода на коррозию косвенно наблюдается на рис. 35. Более четко эта связь видна на рис. 36, на котором показана зависимость скорости коррозии стали в дистиллированной воде-от содержания в ней кислорода. Скорость коррозии прямо пропорциональна концентрации кислорода, что отвечает механизму диффузионной кинетики электрохимического процесса. Прямая зависимость наблюдается до тех пор, пока слишком высокая концентрация кислорода не приводит к пассивации поверхности металла. Содержание кислорода в коррозионной среде  [c.67]

Периодическое определение изменения массы образца металла, подвешенного на платиновой или нихромовой проволоке к чашке аналитических весов и находящегося в атмосфере электрической печи, нагретой до заданной температуры, позволяет проследить кинетику газовой коррозии металла на одном образце и установить закон роста пленки во времени (метод не пригоден при образовании на металле легко осыпающейся или возгоняющейся пленки продуктов коррозии). На рис. 320 приведена схема установки для исследования кинетики газовой коррозии металлов в воздухе и продуктах сгорания газа, которая может быть использована и при подаче в нее других газов. На установке ИФХ АН СССР (рис. 321) возможно одновременное испытание шести образцов. Поворачивая крышку печи, можно захватить крючком любой образец для взвешивания. Чтобы можно было загружать образцы, в крышке сделаны щелевидные отверстия. Более чувствительными являются вакуумные микровесы различных конструкций (Мак-Бэна, Гульбрансена и др.).  [c.437]

Рис. 135. Кинетика коррозии стали в отсутствии (4) и в присутствии 0,01 % чS02 (1, 2 и 3) при относительной влажности воздуха Рис. 135. <a href="/info/558630">Кинетика коррозии</a> стали в отсутствии (4) и в присутствии 0,01 % чS02 (1, 2 и 3) при <a href="/info/716">относительной влажности</a> воздуха
Характеристики кинетики высокотемпературной коррозии металла в воздухе являются своеобразным эталоном, позволяющим сравнивать между собой интенсивность коррозии разных материалов в средах с различными коррозионными активностями. При помощи таких характеристик можно определить показатели коррозионной стойкости материалов для иоверхностей нагрева высокотемпературных ступеней воздухоподогревателей котла или установок для получения высокоподогретого воздуха. Кроме того, результаты изучения кинетики коррозии металла в воздухе как в устойчивой среде часто принимаются за основу разработки и проверки инженерных методов расчета коррозионной стойкости материалов.  [c.120]

Существенную роль в кинетике электродных процессов играют растворенные в электролитах газы, которые могут быть естественного происхождения (из воздуха) или продуктом промежуточной электродной реакции. Как и другие окислители, газы участвуют в процессе восстановления и часто играют решающую роль в кинетике коррозии металлов. В присутствии газов коррозионная стойкость металлов уменьшается. Активность газов возрастает в ряду Н2->5->-Н2->С02- С0->Н20->Н0->-Ы02- -->-Вг2-> 02-> С120->С12->С102-> 0з->р2 в соответствии с возрастанием о от —2,25 до +2,87 В.  [c.33]


Обычные и низколегированные стали и чугуны подвержены коррозии в атмосфере воздуха и разрушаются при действии водных растворов солей, щелочей и кислот. Коррозия металлов в этих условиях протекает по законам электрохимической кинетики, часто неравномерно, особенно во влажной атмосфере и растворах солей. Окислителями в этих средах являются растворенный кислород, ионы более благородных металлов по сравнению с железом и ион водорода. Вредное влияние при этом оказывает ион хлора, являющийся сильным депассиватором. Присутствие ионов хлора и кислорода в водных растворах солей способствует развитию точечной коррозии (питтинга).  [c.12]

Следует, однако, отметить, что механизм окисления металла при фретинг-коррозии отличен от кинетики окисления металлов при отсутствии механического воздействия, поскольку структура окислов отличается от структуры, образующейся при обычных условиях. Имеются указания, что интенсивность фретинг-коррозии в сухом воздухе на 55—65% больше, чем во влажном воздухе. Предполагается также, что вследствие адсорбции или капиллярной конденсации паров воды происходит изменение фрикционных характеристик металлических и оксиленных поверхностей трения.  [c.105]

Ряд технически важных металлов может быть объединен во вторую группу, для которой в общем является наиболее характерной параболическая зависимость для кинетики окисления. Надо помнить, что характерная параболическая зависимость для этой группы металлов в некоторых случаях может нарушаться, например при растрескивании рленок, когда график окисления скачкообразно или плавно (а потому менее заметно) меняется в сторону понижения показателя степени параболической зависимости, обычно равного двум. Наоборот, при сравнительно низких температурах у этих металлов наблюдается окисление по параболам более высокой степени, чем квадратичная и даже логарифмический ход окисления. Однако для ряда металлов этой группы при средних и повышенных температурах характерна простая (квадратичная) параболическая зависимость для кинетики окисления. Технически важные металлы этой группы по возрастанию устойчивости к газовой коррозии в атмосфере воздуха можно (правда, довольно условно) расположить в следующий приближенный ряд  [c.100]

Многочисленными экспериментами установлено (см., например, 111], что жидкая среда, особенно коррозионная, не только увеличивает скорость роста усталостной трещины, но также изменяет характер самой диаграммы усталостного разрушения. Так, в наиболее общем случае взаимодействия чистой коррозионной усталости н коррозии под напряжением диаграмма усталостного разрушения в отличие от инертной среды (рис. 1, б, кривая 1) имеет вид, показанный на рис. 1, б кривой 2, который может существенно изменяться в зависимости от параметров нагружения (например, частоты нагружения [12]), структуры материала и физико-химических свойств среды (например, pH среды [131) При этом в отличие от испытаний в вакууме или на воздухе наблюдаются значительные расхождения в результатах исследований, выполненных по различным методикам на одних и тех же материалах и при одинаковых внешних условиях испытания, например, как указано в работе [14], в случае исследования влияния поляризации на кинетику усталостной трещины в алюминиевглх сплавах в 3,5 %-ном растворе Na l.  [c.287]

Можно полагать, что именно протекание аналогичной реакции на электроде и в случае присутствия ионов хлора препятствует пассированию железа в растворах хлоридов. Исследование кинетики анодного процесса показало (рис. II1-4), что анодная поляризационная кривая стали 12ХМв I,ОН растворе сульфата натрия при температуре 300° С имеет сложный характер. С увеличением потенциала до — 0,050 в скорость анодного процесса возрастает. Железо в этой области потенциалов растворяется в активном состоянии. При дальнейшем увеличении потенциала скорость анодного процесса растворения металла сначала уменьшается, а затем изменяется крайне незначительно в достаточно широкой области потенциалов. Последнее обстоятельство указывает на то, что железо переходит в пассивное состояние. С дальнейшим ростом потенциала скорость растворения железа вновь увеличивается. Последняя область потенциалов соответствует перепассивации. Поскольку при низкой и высокой температурах введение в воду сульфата натрия в количестве 0,5 М не влияет существенным образом на характер и скорость коррозии низколегированных сталей аналогичный ход зависимости скорости растворения железа от потенциала следует ожидать и в дистиллированной воде. В нейтральных растворах, насыщенных воздухом, железо корродирует в основном с кислородной деполяризацией. Из представленной на рис. III-5 коррозионной диаграммы, полученной на основании опытных данных [111,6].  [c.96]

Закономерности, установленные при изучении электрохимической кинетики, подтверждаются и прямыми коррозионными опытами, в которых изучалась коррозия железа в пленке 3%-ного раствора Na l (S = 80-10" jn) при различных упругостях водяного пара в воздушной атмосфере (р = 17,0 и р = 7,29 мм рт. сг.). Коррозия изучалась по количеству поглощенного кислорода, которое, как известно, эквивалентно коррозии (рис. 75). Как видно из кривых, количество поглощенного кислорода при давлении паров р = 17,0 мм рт. ст. в 2—3 раза меньше, чем при давлении р = 7,29 мм рт. ст. Иными словами, в опытах, когда относительная влажность воздуха была ниже 100%, л пленка, стало быть, высыхала, скорость коррозии оказалась в несколько ]эаз выше, чем в атмосфере почти 100%-ной влажности [131]. При этом надо, конечно, иметь в виду, что для суммарного коррозионного эффекта важна не только скорость коррозии, но и длительность ее протекания, которая определяется временем пребывания электро-  [c.118]

Ускоренные атмосферные испытания. Лабораторные методы исследования атмосферной коррозии были разработаны раньше многих других лабораторных методов коррозионных испытаний и продолжают непрерывно совершенствоваться. Это можно объяснить, с одной стороны, тем, что в практике атмосферной коррозии подвергается около 80% металлических конструкций и доля коррозионных потерь при атмосферной коррозии превышает половину общих потерь [52], а с другой, тем, что механизм атмосферной коррозии является сложным и изучен далеко не полностью. Несмотря на кажущуюся простоту, воспроизведение в лаборатории условий атмосферной коррозии встречает определенные трудности, которые в значительной мере связаны с тем, что атмосферной стойкости вообще не существует, ибо одни и те же металлы в разных местах корродируют по-разному, так, например, коррозионная стойкость железа может изменяться в зависимости от атмосферы примерно в сто раз 3]. Большое значение имеет влажность воздуха, количество осадков, характер и количество загрязнений, температура и другие факторы. В зависимости от соотношения этих факторов естественную атмосферу делят на сельскую, городскую, индустриальную, сельскую морскую, городскую морскую, морскую, тропическую и тропическую морскую. Подробная характеристика этих типов атмосфер приводится в работе f5]. В соответствии с механизмом процесса атмосферная коррозия классифицируется [52, 53] на мокрую (относительная влажность воздуха около 100%), влажную (относительная влажность ниже 10%) и сухую (полное отсутствие влаги на поверхности металла). В двух первых случаях коррозия шротекает в соответствии с законами электрохимической, а в третьем—в соответствии с законами химической кинетики. Часто их трудно разграничить. В этой связи одним из первых условий воспроизведения в лаборатории атмосферной коррозии является создание на поверхности металла тонкой пленки влаги, имеющей постоянную или переменную толщину. Последнее, по-видимому, более точно отвечает практике. Такие условия в лаборатории достигаются с помощью влажных камер, приборов переменного погружения или солевых камер. Наиболее простая влажная камера — обычный эксикатор, на дно которого налита вода (рис. 13).  [c.64]


Периодическое определение изменения массы образца металла, подвешенного на платиновой или нихромовой проволоке к чашке аналитических весов и находящегося в атмосфере электрической печи, нагретой до заданной температуры, позволяет проследить кинетику газовой коррознн металла на одном образце н установить закон роста пленки во времени (метод непригоден при образовании на металле легкоосыпающейся или возгоняющейся пленки продуктов коррозии). На рис. 201 приведена схема установки для исследования кинетики газовой коррозии металлов на воздухе и в продуктах сгорания газа, которая может быть использована и при подаче в нее любых газов. Более чувствительными являются вакуумные микровесы различных конструкций (Мак-Бэна, Гульбрансена и др.).  [c.371]


Смотреть страницы где упоминается термин Кинетика коррозии в воздухе : [c.113]    [c.120]    [c.375]    [c.63]   
Смотреть главы в:

Коррозия и износ поверхностей нагрева котлов  -> Кинетика коррозии в воздухе



ПОИСК



Кинетика

Кинетика коррозии



© 2025 Mash-xxl.info Реклама на сайте