Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние структурного состояния материала

Влияние структурного состояния материала  [c.77]

Формальная запись уравнения (1.18) без учета локального влияния структурного состояния материала на развитие малых трещин, когда имеет место немонотонное развитие процесса разрушения [100], свидетельствует о существенном влиянии трех параметров на длительность роста усталостных трещин вязкости разрушения материала К , действующего напряжения и размера начального дефекта. Небольшие по размеру дефекты на поверхности материала оказывают влияние на изменение доли периода роста трещины в долговечности.  [c.58]


ВЛИЯНИЕ СТРУКТУРНОГО СОСТОЯНИЯ МАТЕРИАЛА НА ЗАРОЖДЕНИЕ И РАСПРОСТРАНЕНИЕ УСТАЛОСТНЫХ ТРЕЩИН  [c.208]

Одно из возможных решений поставленной задачи сформулировано отраслевым стандартом [35]. При конструировании этого уравнения предполагалось существование ряда параметров, с помощью которых задается структурное состояние материала и учитывается влияние пластической деформации на скорость ползучести, проявляющееся в виде двух противоборствующих факторов — упрочнения и разупрочнения.  [c.82]

На рис. 142, а показано влияние циклического нагружения на характер изменения структурного состояния материала под действием деформационного старения при 620° С. Особенностью данного температурного режима испытания является наличие двух максимумов на кривых изменения электросопротивления образцов после 1 3 5 10 и 15 циклов нагружения (кривые 2, 3, 4, 5 и 6 соответственно). Время достижения первого максимума в большей степени, чем второго, зависит от количества предшествующих циклов нагружения. Первый максимум наблюдается в интервале от 5 до 12 мин, второй — от 1 до 2 ч. Причиной появления ка экспериментальных кривых первого максимума могут быть образование метастабильных выделений, а также реакции между примесными атомами и дефектами кристаллического строения, образующимися в металле при циклической деформации, причем достаточно высокая температура испытания способствует быстрому протеканию этих реакций.  [c.217]

В общем случае структурное состояние материала определяется всей историей предшествующего нагружения, влияние которой существенно зависит от температурно-скоростных условий деформирования. Эти условия при испытаниях с постоянной  [c.44]

Таким образом, на основе дислокационной модели пластического деформирования металлов общая зависимость кривой деформирования от режима нагружения может быть представлена в виде поверхности трехмерного пространства F a, ёэ, ёп) = = 0, где величина эквивалентной деформации определяет структурное состояние материала в момент измерения, сформированное в результате предшествующего нагружения. Существенное влияние истории нагружения на процесс высокоскоростного деформирования требует его учета при обобщении результатов испытания с различными режимами нагружения.  [c.48]

Наши привычные представления о пластичности складываются на основании проведенных опытов, наиболее распространенными из которых остаются испытания на растяжение при комнатной температуре. Их результаты для многих исследователей являются базой отсчета, на основе которой делают попытки прогнозировать поведение металлов при иных условиях - при других схемах напряженно-деформированного состояния, температурах, скоростях деформации и т. д. Влияние этих факторов на пластичность зачастую противоречиво, закономерности найти трудно [69, 71, 72], а в ряде случаев, как считает автор работы [72], вообще невозможно. Это вызвано тем, что помимо перечисленных факторов на пластичность влияют и колебания химического состава (причем важным бывает наличие некоторых примесей), и особенности технологии получения исходного материала, и атмосферные условия в период выплавки, и структурное состояние материала.  [c.205]


Различия в значении абсолютной величины коэффициента т, измеренного разными способами, обусловлены рядом факторов, в том числе исходным структурным состоянием материала, его изменением в процессе растяжения и степенью деформации, при которых определяют т. Большое значение, как показывают результаты работы [22], имеет форма кривых напряжение — деформация в условиях СП течения. Дело в том, что на измеряемую величину т существенное влияние оказывает величина и знак коэффициента деформационного упрочнения я, который зависит от формы истинных кривых деформаций. Как показали исследования, при определении коэффициента т необходимо анализировать истинные кривые растяжения при разных скоростях деформации, измерения производить лишь в точках, где коэффициент п имеет один знак для обеих сравниваемых скоростей деформации. Учет этого обстоятельства требует детального изучения истинных кривых растяжения при разных скоростях деформации. Однако при постановке всего комплекса исследований теряется практический смысл определения коэффициента т как параметра, позволяющего упростить оценку СП поведения материала.  [c.13]

НИЯ поверхности), то разрыва кривых усталости не должно быть. Следовательно, структурное состояние материала и в особенности состояние поверхностных слоев (наличие концентраторов напряжения) и окружающая среда должны оказывать сильное влияние на наличие или отсутствие разрыва в кривых усталости, что и подтверждается рядом исследований.  [c.20]

При резании почти вся механическая энергия деформации и трения переходит в тепло. Тепло оказывает влияние на износостойкость инструмента, на качество поверхности детали, на процесс трения и наростообразования, изменяет физико-механиче-ское и структурное состояние материала в зоне резания. Общее количество тепла приближенно определяется по формуле  [c.56]

Для оценки влияния ориентации неметаллических включений на анизотропность стали использовались два метода испытания, дифференцированные по цели применения и структурному состоянию материала  [c.73]

Рассматривая, однако, структурные изменения при ТМО, необходимо отметить, что в результате такой обработки, в отличие от МТО, наиболее существенно изменяется энергетический параметр п, характеризующий среднюю энергию, поглощаемую каждым единичным объемом при нагружении. Резкое повыщение статической прочности, вызванное возрастанием параметра п, вследствие роста интенсивности поглощения энергии сопровождается в то же время сильным увеличением степени искаженности решетки материала в упрочненном состоянии. Это усиливает метастабильность получаемого структурного состояния, вследствие чего эффект упрочнения оказывается неустойчивым при повышенных температурах и больших сроках службы стали. Поэтому ТМО целесообразно применять главным образом для повышения статической прочности при кратковременных нагрузках. Таким образом, относительное влияние каждого из энергетических параметров п и Уз на получаемое в результате термомеханического воздействия упрочненное состояние. металла оказывается различным, и это различие предопределяет поведение материала при дальнейшей службе. Структурно-энергетический подход позволяет (с помощью указанных параметров) дифференцированно оценивать факторы упрочнения с учетом конкретных условий эксплуатации металла.  [c.86]

Из литературных данных по зависимости относительного удлинения от температуры испытания для неотожженных и отожженных металлов VI-А группы можно отметить, что в ряде случаев при достаточно низких значениях температуры испытания кривые относительного удлинения для неотожженного материала идут выше кривых для отожженного материала, однако при болев высоких температурах пластичность отожженного материала становится выше [10]. В работе [И] предлагается объяснение подобного влияния отжига на деформированные металлы VI-A группы. Исходя из таких же позиций, можно объяснить и результаты настоящей работы, так как вольфрам, полученный кристал-. лизацией из газовой фазы, согласно Голованову и др. [12], по структурному состоянию подобен деформированному металлу.  [c.62]


На основе всесторонних материаловедческих исследований в настояшей книге проведен анализ влияния структурных факто-ров на жаропрочность и трещиностойкость теплоустойчивых сталей. Рассмот рены физические процессы, протекающие в металле при восстановлении служебных свойств материалов путем применения повторной термической обработки. Показаны пути повышения точности оценки жаропрочных свойств с учетом напряженного состояния, колебания температур и напряжений, структуры и кратковременных свойств материала. В заключение  [c.3]

Снижение характеристик трещиностойкости с увеличением длительности эксплуатации связано с изменениями физико-химического состояния материала и свидетельствует о необходимости получения системы критериев трещиностойкости и изучения влияния различных структурных факторов на эти критерии.  [c.63]

Структурные изменения материала характерны для деталей, работающих в условиях повышенных температур, значительных напряжений, окислительных и агрессивных сред и т. д. Это детали авиационных двигателей, энергетических силовых установок, химическая аппаратура и т. д. Влияние этих факторов, как правило, по-разному сказывается на состоянии материала ио-верхностного слоя и сердцевины.  [c.178]

Для лучшего понимания механизма изменения теплофизических и прочностных свойств композиций под влиянием высокотемпературного теплового воздействия необходимо получить информацию о структурном состоянии исследуемого материала.  [c.262]

При заданном структурном состоянии сопротивление материала деформации связано с условиями мгновенного нагружения (набором постоянных п>0), если физические процессы микропластической деформации приобретают стабильную скорость, соответствующую действующему уровню нагрузки, за время, сравнимое с временем изучения интересующих нас явлений. Для металлов, в которых процесс деформации контролируется динамикой дислокаций, влиянием старших производных 8 " (п>1), характеризующих процесс нестабильного движения дислокаций, можно пренебречь при изучении процессов, длительность которых значительно превышает время установления скорости движения дислокаций A 5-10 ° . Приращение деформации за такое время определяет максимальное различие кривых деформирования в процессах с нулевым и конечным временем установления скорости дислокаций. Кривые совпадают с заданной погрешностью Де при скорости деформации  [c.24]

Такая зависимость является значительным упрощением, поскольку сопротивление материала определяется его структурным состоянием и условиями нагружения в момент регистрации и, следовательно, возрастание сопротивления деформированию с ростом скорости отражает влияние изменения структуры материала, проявляющееся в скорости релаксационных процессов (при постоянной величине пластической деформации), и рост вязкой составляющей сопротивления (при фиксированном структурном состоянии).  [c.131]

Холодная пластическая деформация и термическая обработка существенно воздействуют на структуру и свойства металлов и сплавов. Поэтому, рассматривая влияние наклепа и термообработки на сопротивление термической усталости, следует прежде всего иметь в виду особенности воздействия этих процессов на структурное состояние и изменение соотношения кратковременных и длительных механических характеристик материала.  [c.148]

Жаропрочность определяется комплексом свойств материала при высоких температурах и зависит от большого числа факторов. Основными из них являются ползучесть, длительная прочность и пластичность. Большое влияние на жаропрочность оказывает структурное состояние металла или сплава и степень его устойчивости при данной температуре во времени.  [c.5]

В исследованиях закономерностей распространения усталостных трещин также наблюдаются сложные зависимости между структурным состоянием и сопротивлением росту трещин. Влияние размера зерна (в диапазоне от 15,5 до 36,7 мкм) на сопротивление росту усталостной трещины в алюминиевом сплаве системы Al-Zn-Mg u в листовых образцах (толщина 1,6 мм) с центральной трещиной рассматривалось в работе [9]. Из анализа кинетических диаграмм усталостного разрушения следует (рис, 6.11), что наилучшее сопротивление распространению усталостной трещины наблюдается у крупнозернистого материала, а наихудшее - у образцов с размером зерна 24,1 мкм. Такая закономерность связана с особенностями механизма усталостного разрушения. Именно у материала с размером зерна 24Д мкм наблюдается на поверхно-  [c.217]

Учитывая, что влияние неоднородности поля напряжений и масштабный эффект являются структурно-чувствительными факторами, при их исследовании весьма эффективным может оказаться рассмотренный в гл. V принцип интеграции континуальных и статистических подходов, основанных на оценке предельного состояния материала в предположении о бесконечной делимости и однородности вещества с соответствующей коррекцией для учета характерных структурных несовершенств данного материала.  [c.205]

Таким образом, степень влияния вида напряженного состояния на ресурс пластичности металла при низких температурах и уровень критической температуры хрупкости зависит от природы материала, его химического состава и структурного состояния. В отдельных случаях соотношение между компонентами тензора напряжений может быть ведущим фактором среди способствующих и определяющих хрупкое разрушение конструкций.  [c.386]


Практически в любом материале, как бы он ни был пластичен при статических испытаниях, может произойти хрупкое разрушение, если в нем при нагружении одновременно образуется множество активных дефектов — несовершенств кристаллической решетки, дислокаций. Такое условие выполняется, например, для взрывной нагрузки. Разрушение в этих случаях состоит из многих, достаточно далеко отстоящих одна от другой трещин, соединяющихся между собой в более или менее правильной последовательности. Отрицательное влияние перечисленных и подобных им факторов усиливается при наблагоприят-ном структурном состоянии материала (крупный размер зерна, наличие наклепа, распад твердого раствора и т. д.). Влиянию режимов термической обработки и дефектов материала на склонность к хрупкому разрушению посвящены работы [55, 103, 106, 116 и др.]  [c.39]

Вследствие связи коррозионного растрескивания с действием внутренних растягивающих напряжений существенно влияние технологических операций, приводящих к возникновению остаточных напряжений как в поверхностном слое, так и в теле детали. Вместе с тем это влияние по-разному проявляется в различных структурных состояниях материала. Приведем значения времени ( в ч) до появления микротрещин в образцах из стали 11Х11Н2ВМФ при испытании в среде Na l 50%, Н2О 50%, ЗеОг 1%, уротропин 1% при сг = 0,5 Оо,2 (данные Л. А. Филимоновой. И. С. Калашникова).  [c.71]

Таким образом, проведенное исследование показало, что наиболее чувствительными характеристиками к изменению структурного состояния изученных сталей в процессе деформационного старения являются уровень микроискажений кристаллической решетки матрицы и геометрические параметры выделившихся частиц второй фазы. Влияние предварительной холодной пластической деформации растяжением в исследованных режимах на механизм деформационного старения стали 0Х18Н10Ш обнаруживается в появлении двух стадий процесса, связанных с сегрегацией углерода и азота на дислокациях (в течение первого часа изотермической выдержки) и образованием частиц второй фазы (при выдержке до 3 ч). Дальнейшее старение до 1000 ч приводит к коагуляции и перераспределению дисперсных частиц уровень стабилизации структурного состояния материала при этом существенно не меняется.  [c.204]

При построении модели удобно отнести к вязкому элементу только эффекты, связанные с влиянием скорости деформации при фиксированном структурном состоянии материала. При этом величина трения определится структурой материала, сфор-  [c.52]

Если измерения вязкости упругих жидкостей производятся в иижней части структурной ветви, когда удовлетворяется условие т) < Г),г, то определяющее влияние на величину г оказывает удаленность изучаемого структурного состояния материала от его состояния с неразрушенной структурой. Это означает, что величина вязкости т] б может быть использована как единственный параметр, нормирующий вязкостные свойства упругих жидкостей. Действительно, Бьюкки [38 ] предложил метод представления результатов изменения вязкости растворов полимеров в форме инвариантной относительно их концентраций и температур на основе использования зависимости 1ёЦзЫнб от Ig (Dr] s/(pT), где ф — объемная доля полимера в растворе.  [c.121]

Поскольку структурное состояние материала сильно зависит от режима термообработки, в этом отношении должна быть полная определенность. Состояние поставки в этом смысле является достаточно неопределенным. Надо учитывать, что при обработке резанием, особенно при затупленном режугцем инструменте, неоднородность структуры вносится поверхностным наклепом, что особенно ощутимо в тонкостенных образцах. То же относится к обработке давлением и к отливке. Поэтому каждая партия образцов подвергается назначаемой экспериментатором термообработке (отжигу, закалке, отпуску и т. д.) с последующим контролем путем микроструктурного анализа. При этом следует избегать образования окислительных пленок. Отжиг способствует ослаблению начальной анизотропии, вызванной операциями прокатки, волочения и т. п. Надо учитывать, что в случае закалки структурные характеристики материала при больших поперечных размерах образца будут неодинаковыми по глубине, так как сама глубина прокаливаемости сравнительно невелика это может быть источником влияния так называемого масштабного фактора .  [c.314]

На наличие перегиба в области малоцикловой усталости (см. рис. 1.7, точка Б) влияет структурное состояние материала. В работе [10] исследовали влияние структуры на закономерности малоцикловой усталости сплава Al-Li 8090 в закаленном (525 °С, закалка в воду) и закаленном и состаренном (190 °С, 12 ч) состояниях. После старения внутри зерен происходит гомогенное выделение б - фазы (AljLi), а по границам зерен наблюдается образование зон свободных от выделений (pre ipitate -  [c.13]

Ранее этот метод использовали для сравнительного изучения влияния таких переменных факторов, как состав н структура сплава или добавки ингибиторов к коррозионным средам, а также для исследования комбинированного влияния состава сплава и коррозионной среды на разрушение в тех случаях, когда в лабораторных условиях не удавалось обнаружить растрескивания образцов прн нспытаннн по методу постоянной нагрузки или постоянной деформации. Таким образом, испытания при постоянной скорости деформации — относительно жесткий вид лабораторных испытаний в том смысле, что при нх применении часто облегчается коррозионное растрескивание, в то время как другие способы испытания нагруженных гладких образцов не приводят к разрушению. С этой точки зрения рассматриваемый способ испытания подобен испытаниям образцов с предварительно нанесенной трещиной. В последние годы многие исследователи поняли значение испыта-Н1и"1 с использованием динамической деформации и теперь представляется, что испытания этого типа могут применяться гораздо более широко благодаря своей эффективности, быстроте и более надежной оценке исследуемых вариантов. На первый взгляд, может показаться, что испытания образцов на растяжение при малой скорости деформации до их разрушения в лабораторных условиях имеют небольшое сходство с практикой разрушения изделий прн эксплуатации. При испытаниях по методу постоянной деформации и методу постоянной нагрузки распространение трещины также происходит в условиях слабой динамической деформации, в большей или меньшей степени зависящей от величины первоначально заданных напряжений. Главное заключается во времени испытаний, в течение которого зарождается трещина коррозионного растрескивания, и в структурном состоянии материала, определяющем ползучесть в образце. Кроме того, появляется все  [c.315]

Технологические остаточные напряжения в зависимости от условий работы деталей могут оказывать положительное, отрицательное или несущественное влияние на их эксплуатационные свойства, в частности, на сопротивление усталости. Характер и степень этого влияния определяется результатом взаимодействия остаточных напряжений с напряжениями от внешних нагрузок, характером приложения этих нагрузок (статическое, динамическое, циклическое и др.), а также влиянием окружающей среды (температура, степень агрессивности и т.п.) и структурным состоянием материала детали. При статических нагрузках остаточные напряжения практически не влияют на показатели гфочности пластичных материалов, так как при появлении небольших гшасти-ческих деформаций они снимаются.  [c.92]


Проблема разработки износостойкого материала для конкретных условий абразивного изнашивания является чрезвычайно сложной и поэтому даже при целепаправлеппых работах по ее изучению до настоящего времени не получила своего полного решения. С одной стороны еще недостаточно пакоплепо фактического экспериментального материала о влиянии структурного состояния, количества карбидной фазы металла на его способность к сопротивлению абразивному разрушению, а с другой почти все исследования влияния химического состава сталей и сплавов па их износостойкость проводились для конкретных частных условий, поставленных перед каждым исследователем, как правило, не охватывают проблему в целом.  [c.60]

Роль окружающей среды в протекании процесса пластической деформации у вершины трещины проявляется через концентрацию водорода, которая возрастает в непосредственной близости к этой вершине. Это наиболее близкая к реальной ситуации схема повреждения материала, которая используется для описания влияния агрессивной среды на ускорение процесса разрушения. В соответствии с соотношением (2.23) критическое раскрытие трещины уменьшается при увеличении интенсивности воздействия среды в момент перехода к нестабильному разрушению. Вместе с тем распространение усталостной трещины в коррозионной среде сопровождается ее ветвлением как по телу зерна, так и по границам зерен или иным структурным элементам [94]. Предельное состояние наступает одновременно но нескольким локальным вершинам трещины в каждом сечении вдоль всего ее фронта. В этой ситуации предельное состояние достигается при существенно иной интенсивности напряженного состояния материала, чем без ветвления мезотрещин вдоль макровершины трещины.  [c.115]

Сложность и многообразие физико-механических процессов, протекающих в деформируемом теле, приводят к многозначным конечным результатам, которые проявляются в. виде неожиданного разрушения или неоправданно высокого механического сЛротивлепия, Пра1вильное объяснение поведения материала под нагрузкой и, что более важно, предсказание этого поведения возможны лишь после выяснения физической сущности протекаемых процессов. В связи с этим такие широко известные эксплуатационные факторы, как степень сложности напряженного состояния, скорость деформирования, широкий диапазон температур, степень физико-химической активности окружающей среды и др., должны рассматриваться с точки зрения влияния их на структурную основу материала и через нее на наблюдаемые механические свойства.  [c.3]

Усталостное разрушение представляет собой процесс, состояш ий из двух фаз. Это — образование заметной макротрещины, а затем ее дальнейшее развитие до полного разрушения образца. Протекание первой фазы связано со структурными особенностями материала, состоянием поверхности и амплитудой цикла. Во второй фазе сохраняется влияние структурных особенностей й амплитуды цикла, но вступают в силу новые факторы, такие, как размеры и форма образца и законы распределения напряжений по его объему. Естественно, вознцкает мысль, не следует ли изучать эти процессы раздельно и тем самым, хотя бы частично, освободиться от наложения влияний многих факторов и провести более точную границу между свойствами материала и свойствами образца.  [c.104]

Советские исследователи-прочностники показали, что закономерности усталостных разрушений металлов лежат в основе расчета деталей машин под действием переменных напряжений, а также обоснования конструктивных и технологических способов увеличения их прочности. В связи с этим важную роль играют прежде всего концентрация напряжений и абсолютные размеры, как факторы прочности деталей. Анализ значительного экспериментального материала показал существование, с одной стороны, влияния абсолютных размеров на сопротивление усталости как проявление структурной неоднородности материала и влияние дефектов его строения и, с другой, эффект неоднородности напряженного состояния (Г. В, Ужик и др.). На утомляемость деталей наряду с концентрацией напряжени и абсолютных размеров оказывают большое значение качество поверхности, свойство поверхностного слоя и влияние среды (сопротивление усталостному разрушению в коррозионных средах, кавитационные разрушения).  [c.43]

Изменение химического состава гетерофазного сплава в результате сублимации вызывает количественные и качественные изменения в его структурном состоянии. Быстрее всего, конечно, такие изменения наступают в поверхностной зоне материала, но со временем они распространяются на внутренние слои. Исследование влияния вакуумного нагрева [остаточное давление газа изменялось от 67 мкн1м (5-10 ) до 0,133 мкн1м (l 10 мм рт. ст.), а температура от 760° до 980° С] на микроструктуру нержавеющей стали 316 обнаружило значительное изменение фазового состава сплава [398]. Выдержка этой стали при 870° С в течение 3453 ч привела к выделению относительно грубых частиц Х фазы. Первоначально высокая скорость потери марганца — элемента, стабилизирующего аустенит,— явилась причиной появления на ранних стадиях сублимации в припо- верхностной зоне островков феррита, однако дальнейшая выдержка стали 316 в вакууме при 870 и 980° С привела к полному исчезновению феррита. Авторы объясняют повторный переход сплава в у-состояние сочетанием сравнительно низких потерь никеля и больших потерь хрома. Интересно отметить, что при переходе поверхностного слоя образцов в а-состояние скорость сублимации сплава приближалась к скорости сублимации чистого железа.  [c.435]

Простейшие подходы к описанию разрушения, рассмотренные в главе АЗ, мало применимы при сложных программах изменения нагрузки и температуры в цикле, даже в случае регулярного циклического нагружения, которое в основном рассматривается ниже. Особенную трудность представляет отражение влияния ползучести при выдержках в полуциклах. Для его моделирования могут быть использованы методы разделения размаха (см. разделы А6.1, А6.2 — последний включает дополнительный учет взаимного влияния разных видов накапливаемого повреждения). Более традиционно для феноменологического описания использование уравнения состояния, в соответствии с которым скорость накапливаемого повреждения представляет собой функцию текуш,его состояния материала. Главная трудность при этом заключается в выборе параметров состояния, оп-ределяюш,их достоверность и удобство модели. В разделе А6.3 рассматривается такая модель, основанная на параметрах, выявленных благодаря анализу структурной модели среды (см. гл. А5). Раздел А6.4 затрагивает сложную проблему моделирования процесса распространения треш,ин малоцикловой усталости. Эта проблема тесно связана с проблемой образования макротреш,и-ны, которой посвяш,ена первая часть главы.  [c.213]

Известно, что усталостное разрушение прёдстаёляет собой процесс, состоящий из л вух стадий зарождения трещины и ее дальнейшего развития до полного разрушения образца. Протекание первой стадии связано со структурными особенностями материала, состоянием поверхности и уровнем нагрузки. Во второй стадии сохраняется влияние структурных особенностей и амплитуды цикла, но вступают в силу новые факторы, такие, как размеры и форма образца й законы распределения напряжений по его объему. Поэтому полный анализ процесса усталостного разрушения должен включать рассмотрение как зарождения трещины, так и ее распространения. При этом усталостная долговечность может быть выражена простой зависимостью  [c.192]

Микроструктурная неравнопрочность обычно проявляется тем сильнее, чем локальнее напряженное состояние. Поэтому, при таких видах нагружения и разрушения материала, как усталостное, кавитационное и обработка резанием, при которых размер максимально нагруженных зон очень мал, влияние структурной неоднородности оказывается гораздо большим, чем при однородных способах нагружения.  [c.340]


Смотреть страницы где упоминается термин Влияние структурного состояния материала : [c.56]    [c.138]    [c.132]    [c.222]    [c.8]   
Смотреть главы в:

Циклическая прочность металлических материалов  -> Влияние структурного состояния материала

Усталость металлических материалов  -> Влияние структурного состояния материала



ПОИСК



Влияние Влияние материа

Влияние материала

Глава б I Влияние структурного состояния материала на зарождение и распространение усталостных трещин

Состояние материала



© 2025 Mash-xxl.info Реклама на сайте