Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структурные характеристики материалов

Структурные характеристики материалов  [c.13]

СТРУКТУРНЫЕ ХАРАКТЕРИСТИКИ МАТЕРИАЛОВ 15  [c.15]

СТРУКТУРНЫЕ ХАРАКТЕРИСТИКИ МАТЕРИАЛОВ  [c.17]

Контроль физико-механических свойств материалов акустическими методами — одно из важнейших направлений неразрушающего контроля качества материалов, деталей, изделий и конструкций. Контроль основан на установлении взаимосвязи физико-механических, технологических, структурных характеристик материалов и изделий с акустическими характеристиками.  [c.247]


Степень искривления. Упругие постоянные материалов, образованных системой двух нитей, в значительной степени определяются их структурными параметрами, например (см. зависимости в табл. 4.1) углом наклона волокон основы 0 к оси 1. Численная оценка изменения упругих характеристик материалов, образованных системой двух нитей, в зависимости от угла 0 представлена в работе [25]. Увеличение угла 9 до 15° приводит к незначительному снижению модулей упругости Ех и 3. Значение модуля сдвига 0,3 при этом существенно увеличивается. Наиболее чувствителен к углу наклона волокон основы коэффициент Пуассона v,з, при увеличении 0 от о до 15° его значение возрастает примерно на 60%.  [c.95]

Выбранные методы позволяют определить непосредственно в изделии большое количество различных физических характеристик таких как скорость и затухание упругих волн (продольных, сдвиговых, поверхностных, изгибных, Лэмба, Лява и др.), коэффициент отражения и преломления упругих волн, угол поворота плоскости поляризации сдвиговых волн, диэлектрическую проницаемость, тангенс угла электрических потерь, коэффициент затухания электромагнитных волн, коэффициенты отражения, прохождения и преломления электромагнитных волн СВЧ и ИК диапазона, которые могут быть использованы при комплексном контроле механических, технологических и структурных характеристик композиционных полимерных материалов.  [c.104]

Рассмотрим зависимости основных физических свойств углеродных материалов, получаемых по электродной технологии, от структурных характеристик. Пористость и анизотропию учтем в соответствии с методом, изложенным выше. Такое рассмотрение вполне допустимо, чтобы получить общие закономерности изменения свойств анизотропных углеродных материалов.  [c.38]

Вследствие воздействия на, материал нейтронного облучения его свойства суш.ественно изменяются. Изменение кристаллической структуры графита проявляется в росте размера элементарной ячейки вдоль кристаллографической оси с и сокращении— вдоль оси а уменьшении размеров кристаллитов, определяемом по ширине рентгеновских дифракционных линий снижении степени упорядоченности. Поэтому установление общих закономерностей изменения структурных характеристик углеродных материалов в зависимости от условий облучения (дозы,, температуры) и от исходных значений их позволит лучше понять механизм радиационного изменения свойств конструкционного графита.  [c.99]


Одной из важнейших особенностей этих соединений является их склонность к конденсации в метастабиль-ном стеклообразном состоянии. Стеклообразная структура окислов и ряда других материалов обладает весьма высокой устойчивостью. В стеклообразном материале углы между валентными связями и даже межатомные расстояния варьируются в значительных пределах, структурные характеристики носят лишь статистически усредненный характер.  [c.454]

Одной из основных характеристик материалов, определяющих их жаропрочность, является стабильность их структуры и свойств при высоких температурах. Для определения характера идущих при высоких температурах структурных превращений используются методы металлографического исследования с помощью оптического и электронного микроскопов, фазового и рентгеноструктурного анализа, а также вакуумной металлографии. Задачей этого комплекса исследований является установление механизма структурных превращений и характера образующихся фаз, кинетики их развития, а также температурного интервала, в котором идут эти процессы. С этой целью образцы подвергаются выдержкам не только при рабочей, но и при других температурах, причем, как и при испытаниях на длительную прочность, максимальная длительность старения образцов должна быть не менее чем на порядок меньше ресурса работы изделия. При более высоких температурах, чем рабочая, максимальная длительность выдержки может быть соответственно уменьшена. Так, для оценки процессов старения сварных соединений, предназначенных для работы в течение 10 ч при 600° С максимальная выдержка образцов при этой температуре не должна быть менее 10 ч при 650° С не менее 3-10 ч, а при 700° С не менее 500 ч. Соответственно должны меняться и промежуточные выдержки. Для рассматриваемого случая желательно их принимать следующими при 600° С —  [c.119]

Таким образом, при оценке долговечности в условиях протекания интенсивного деформационного старения (что свойственно большому классу сталей при эксплуатационных температурах) и при разработке методов экстраполяции прочностных и пластических свойств на длительные времена могут быть использованы структурные характеристики, изменение которых отражает физические процессы, протекающие в материале под действием нагрузки.  [c.200]

Образование в процессе трения новых слоев, главным образом в результате окислительных процессов, Б. И. Костецкий и его ученики относят к явлению универсальной структурной приспособляемости материалов . Универсальность этого явления, по мнению авторов, состоит в том, что оно реализуется при трении любых материалов в определенном, зависящем от вида этих материалов диапазоне нагрузок и скоростей взаимного перемещения. Диапазон нормального трения зависит от состава и концентрации вакантных компонентов внешней среды и от температуры. Характеристики внешней среды могут расширять или сужать диапазон явления структурной приспособляемости и менять уровень нормального трения и износа.  [c.24]

Для реологической характеристики материалов очень важны значения т и у, соответствующие максимумам на кривых т (у), а именно т и у . Если материалы относятся к слабо релаксирую-щим в упругой области, с хрупко разрушающейся структурой (различные пластичные дисперсные системы), ее интенсивное изменение начинается при достижении максимума на кривых т (у). В упругих жидкостях оно обычно обнаруживается в верхней части восходящей ветви кривых т (у) до максимума. Вообще значения т и у, при которых развивается изменение структуры материала, приводящее к структурной релаксации, зависит от природы материала и скорости его деформирования.  [c.72]

Тепловой режим конструкций энергетических устройств из композитных материалов (КМ) в ряде случаев характеризуется интенсивным теплообменом на поверхности, высокими скоростями изменения температуры во времени и большими градиентами температур внутри этих конструкций. При этом в материале возникают нелинейные физико-химические явления, которые часто ведут к снижению несущей способности конструкций. К ним относятся структурные фазовые превращения, взаимодействие компонентов, расслоение, температурные и структурные напряжения, изменение теплофизических, упругих, прочностных и других характеристик, реологические эффекты. Расчет предельного состояния конструкции, находящейся в таких условиях, должен включать описание процессов теплопроводности, термо- и вязкоупругости, кинетики химических реакций, аэродинамики фильтрующих газов, диффузии, а также требует из-за анизотропии свойств определения большого количества теплофизических и механических характеристик материалов. Точный расчет с учетом изменения характеристик от температуры весьма сложен, так как связан с решением нелинейных интегродифференциальных уравнений с переменными коэффициентами. На достоверность его результатов большое влияние оказывает трудность представления и выбора достаточно полно отражающей действительность модели процесса, связанного с необратимыми явлениями.  [c.7]


Уменьшение погрешностей расчета достигается тем, что обобщенная характеристика учитывает изменение механических характеристик материалов (обратимое и необратимое), влияние структурных и термических напряжений, а также особенности технологических процессов изготовления и технологические дефекты конструкции, которые не могут быть учтены в полном объеме существующими методами расчета.  [c.11]

Многообразие структурных элементов создает широкий диапазон для исследования влияния их характеристик на свойства дисперсных и композиционных материалов. С другой стороны, анализ комплекса требований к реальным материалам показывает, что нельзя получить в одном материале все свойства. Специализация, преимущественное применение в конкретной области диктуют необходимость декомпозиции и углубленного изучения влияния на свойства материала характеристик всех уровней, в том числе низшего, на котором находятся и структурные характеристики.  [c.35]

Информацию о структуре материала, размерах элементов, их ориентации и распределении дают флуктуации потока ионизирующих излучений. Для интерпретации флуктуаций в терминах структурных параметров композита рассмотрим последовательность моделей, которые позволяют исследовать взаимосвязи и взаимозависимости между структурными характеристиками композиционных материалов разных уровней.  [c.173]

Известно, что результаты испытаний материалов на усталостную прочность имеют ярко выраженный статистический характер. Это объясняется влиянием начального размера дефекта, который, очевидно, в значительной степени является случайной структурной характеристикой материала. Таким образом, статистическая природа усталостной прочности аналогична статистической природе хрупкой прочности.  [c.349]

Направим координатные оси прямоугольной пластины вдоль сторон и в дальнейшем х , будем обозначать соответственно через X, у, z. Будем считать, что структура армирования пластины соответствует ортотропному материалу с главными направлениями упругости, параллельными сторонам пластины. Такой характер ортотропии может быть реализован, например, армированием пластины т-семействами непрерывных волокон постоянного поперечного сечения, структурные характеристики которых удовлетворяют соотношениям (8.2).  [c.111]

Наличие неравномерности в укладке волокон, а также различные виды их укладки могут оказывать определенное влияние на прочностные характеристики композитов. Погрешности в укладке волокон имеют, как пра вило, случайный характер, и с учетом разброса прочностных свойств волокон анализ влияния их на процессы разрушения материалов представляет сс бой чрезвычайно сложную вероятностную задачу. Имитационное моделирование композитов на ЭВМ открывает принципиально новые возможности для постановки задач о влиянии структурной неоднородности материалов на их свойства. Для решения этих задач в ряде случаев также применима плоская структурная модель композиционного материала. Неравномерность укладки волокон в моделируемом сечении имитируется на ЭВМ двумя путями.  [c.169]

К другой группе факторов относятся а) отклонения механических характеристик от нормативных благодаря нарушениям в условиях изготовления, ковки, термической обработки б) повышенная чувствительность к недостатка. механической обработки в) неоднородность свойств благодаря структурным особенностям материалов, малой пластичности, повышенной остаточной напряжённости и т. д. Эти отклонения в характеристиках механической прочности характеризуются сомножителем величина которого при применении более высококачественных материалов и совершенной технологии, при расчёте иа сопротивление пластическим деформациям составляет 1,2—2,0 в зависимости от степени пластичности при расчёте на усталость 2 составляет 1,3-1,7, увеличиваясь для менее однородных материалов (литьё) и деталей больших размеров и сложных форм до 2 = 3 и более.  [c.384]

Для дальнейших расчетов следует учесть, что большая часть годо- вых эксплуатационных затрат для оборудования с фиксированными стоимостными, конструктивными и структурными характеристиками от варьирования выпуска на данном оборудовании не зависит амортизационные отчисления, затраты на ремонт и обслуживание, производственная зарплата. И наоборот, текущие затраты на инструмент, электроэнергию, основные и вспомогательные материалы достаточно строго пропорциональны фактическому выпуску продукции (годной и бракованной).  [c.415]

Процессы усталостного повреждения, условия возникновения и распространения трещин под циклической нагрузкой носят случайный характер, так как тесно связаны со структурной неоднородностью материалов и локальным характером разрушения в микро- и макрообъемах. Усталостные разрушения обычно возникают на поверхности, поэтому качество и состояние поверхности часто является причиной случайных отклонений в образовании разрушения. Эта особенность усталостных явлений порождает существенное рассеяние механических характеристик, определяемых при испытании под циклической нагрузкой. Рассеяние свойств при усталостном разрушении значительно превышает рассеяние свойств при хрупком и вязком разрушениях. В связи с этим статистический анализ и интерпретация усталостных свойств материалов и несущей способности элементов конструкций позволяют отразить их вероятностную природу, являющуюся основным фактором надежности изделий в условиях длительной службы.  [c.129]

Бесконтактные методы теплового контроля основаны на использовании инфракрасного излучения, испускаемого всеми нагретыми телами. Инфракрасное излучение занимает щирокий диапазон длин воли от0,76 до 1000 мкм. Спектр, мощность и пространственные характеристики этого излучения зависят от температуры тела и его излу-чательной способности, обусловленной, в основном, его материалом и микро-структурными характеристиками излучающей поверхности. Например, шероховатые поверхности излучают сильнее, чем зеркальные. При повышении температуры мощность из лучення  [c.117]


В некоторых слу (аях при расчете модулей упругости структурно неоднородных материалов мржно ограничиться средним арифметическим или геометрическим их усредненных значений по Фойгту и Рейссу. Такой прием приводит к удовлетворительным результатам для однофазных поликристаллов, в которых различия в свойствах компонентов (отдельных кристаллов) обусловлены только их анизотропией [83, 88]. С увеличением различий между упругими характеристиками компонентов материала точность таких усреднений снижается [60].  [c.54]

Таким образом, знакопеременное нагружение и термоциклиро-вание способствуют образованию и развитию диффузионных зон в переходном слое биметалла. Увеличение таких зон приводит к некоторому снижению циклической прочности биметалла, а с другой стороны, оно не сказывается на статических прочностных характеристиках биметалла. Эту склонность композиционного материала необходимо учитывать при разработке технологического процесса наплавки и сварки разнородных по структурному классу материалов. Выбор соединяемых материалов необходимо связывать с условиями дальнейшей эксплуатации такой композиции.  [c.86]

В гл. 1 было показано, что основные физические свойства полученных по электродной технологии графитовых конструкционных материалов, к которым относится и реакторный графит, определяются главным образом двумя факторами—пористостью и совершенством кристаллической структуры. В этой главе приводится описание радиационного воздействия на материалы и прежде всего изменение, структурных характеристик углеродных материалов. При рассмотрении действия облучения на графит изменением макропористости можно пренебречь, поскольку изменение макропористости относительно исходной величины незначительно. Поэтому в дальнейшем пористость принимается равной пористости необлучепного материала.  [c.99]

Нарушения структурной однородности материала могут быть вызваны различными причинами неравномерное взаимное распределение исходных компонентов, наличие посторонних примесей и газообразных включений и т. п. При этом нарушается равноплотность материала во всем его объеме и он становится неравнопрочным, более проницаемым и менее стойким относительно различных агрессивных сред. В то же время искусственно регулируемая структурная неоднородность материалов в ряде случаев может оказаться весьма эффективной в части придания им своеобразного комплекса технически важных свойств. Так, например, газонаполненные материалы, пено- и сотопласты, пеностекла, пенобетоны, пеносиликаты и т. п. отличаются самыми низкими весовыми характеристиками и находят широкое применение в машиностроении.  [c.10]

Успехи современного материаловедения в значительной степени связаны с установлением зависимости свойств материалов от их состава, способов получения и обработки. Обобщение большого экспериментального массива исследований фазовых равновесий, изменений свойств и их зависимостей от состава позволило в свое время Н.С. Курнакову выделить самостоятельный раздел общей химии, который он назвал физикохимическим анализом материалов. Предметом физико-химического анализа являются исследования фазовых диаграмм равновесий, количественное истолкование диаграмм состав—свойство и установление количественных взаимосвязей между особенностями межмолекулярных взаимодействий и топологий микро-, мезо- и макроструктуры материалов. Осознание существенного влияния особенностей структуры, а также дисперсности неорганических материалов связано с работами И.В. Тананаева. Развивая представления Н.С. Курнакова о фазовых диаграммах и диаграммах состав—свойство, он отметил необходимость введения четырехзвенной формулы физико-химического анализа, в которую входят еще структурные характеристики и дисперсность как факторы, влияющие на свойства материалов [8].  [c.7]

Принципиальное различие в сверхпластической деформации (СПД) металлов и керамики связано с их структурными характеристиками. Размер структурных составляющих, необходимых для проявления эффекта сверхпластичности в керамике, составляет 0,1...1мкм, что в десять раз меньше, чем у большинства ССП материалов [36]. Получение керамических заготовок для последующей СПД с таким размером зерна осу-  [c.418]

Непрерывно растут объемы выпуска таких материалов, расширяются области их использования, нспсоплен значительный экспериментальный материал по свойствам и структурным характеристикам. Отсутствие теории ведет к большим осложнениям с интерпретацией результатов измерения. Еще большие проблемы возникают при исследовании полиармированных материалов с различными по геометрии и характеристикам наполнителями.  [c.9]

Однако добиться даже качественного соответствия экспериментальных и теоретических зависимостей характеристик материалов от пористости удается редко. Как следует из (7.39), причина в том, что два—три структурных уровня не охватывают всего многообразия структур, и тем более в таком подходе нельзя учесть их корреляцию и описать синергические эффекты. Теория фракталов позволяет учитывать такого рода эффекты естественным образом и дает возможность строить описание процессов исходя из первых принципов.  [c.277]

Зашита бетонных строите.дьных конструкций основывается, главным образом, на улучшении структурных характеристик бетона, а именно, плотности, непроницаемости и химической стойкости. Если возникают трудности при создании структуры, обеспечивающей химическую стойкость бетона, то для его защиты используют покрытия, выполненные из химически стойких материалов.  [c.278]

Расчет долговечности при циклическом упругопластическом деформировании основан на использовании циклических деформационных характеристик материалов,, изменяющихся с числом циклов нагружения, и величины предельной пластичности при однократном статическом разрыве. Вследствие структурной неоднородности поликристаллических материалов, к которым относятся конструх ционные стали и сплавы, при циклическом упругопластическом деформировании наблюдается неоднородность развития пластической деформации в отдельных зернах (или участках) рабочей базы образца, нагружаемого в условиях однородного напряженного состояния. В результате в участках с повышенными значениями пластической деформации (по сравнению со сред ней) возникают предельные по накопленному повреждению состояния с образованием микротрещин. На основе эксперименталЬ ного измбрения локальных деформаций на поверхности образцэ1 показана возможность описания рассредоточенного трещинообразования при малоцикловом нагружении (статья С. В. Серен-сена, А. Н. Романова и М. М. Гаденина). При этом показано так--же, что степень структурной неоднородности может быть описана через параметры нормального закона распределения микротвердости.  [c.3]

При этом необходимо отметить, что выбранный нами случай нагружения характеризовался ярко выраженным процессом карбидообразования, поскольку испытания проводились в условиях, когда в исследуемом материале (сталь Х18Н10Т) интенсивно протекают процессы старения, инициируемые действием упругопла-стической деформации. В связи с этим проверенная выше возмоЖ ность использования структурного параметра йИ для описания изменений пластических и прочностных свойств в процессе дли тельного нагружения, по-видимому, справедлива и для других материалов, эксплуатируемых в интервале температур интенсивного деформационного старения. Для материалов другого класса и других условий нагружения, когда указанные процессы не проявляются или проявляются слабо, наиболее представительными могут оказаться иные структурные характеристики (наличие второй фазы, например, перлита в перлитных сталях, блочность структуры и пр.). Возможность использования других характеристик тре--бует дальнейшей экспериментальной проверки.  [c.113]


Рассмотрены основные структурные особенности развития процесса старения в конструкционных материалах, инициируемого статическим ипи циклическим деформированием. Применительно к малоцигловому нагружению при повышенных температурах обсуждаются основные структурные параметры, используемые для описания кривых разрушения. Отмечается необходимость и возможность использования структурных характеристик для разработки методов экстраполяции циклической прочности и пластичности на длительные сроки службы деталей. Ил. 1, список пит. 40 назв.  [c.142]


Смотреть страницы где упоминается термин Структурные характеристики материалов : [c.104]    [c.143]    [c.94]    [c.483]    [c.92]    [c.200]    [c.230]    [c.529]    [c.771]    [c.13]    [c.225]    [c.32]    [c.483]   
Смотреть главы в:

Сопротивление материалов  -> Структурные характеристики материалов



ПОИСК



Материалы — Характеристики

Характеристики структурные



© 2025 Mash-xxl.info Реклама на сайте