Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ламинарный режим потоков в трубах

Ламинарный режим потоков в трубах  [c.82]

Для каждой установки существует некоторый диапазон критических значений чисел Ке р, при которых происходит переход от одного режима течения к другому. Значение критического числа Ре, ниже которого режим течения обязательно ламинарный, для трубы круглого сечения составляет примерно 2300. Число Ре р, при котором ламинарный режим течения переходит в турбулентный, существенно зависит от условий входа потока в трубу, состояния поверхности стенок и др. При очень плавном входе и гладких стенках переход от ламинарного режима к турбулентному наступает при числах Ре, р > 2300. На практике чаще встречается турбулентный режим течения.  [c.19]


Режим движения в трубе развитый турбулентный при Re > > Re p, 2 10 . Режим движения в трубе при Re==2-10 2-10 переходный. Уже при Re > 2000 после внесения возбуждения в поток в нем не может восстановиться ламинарный режим движения. Если режим движения в трубе ламинарный, то при входе жидкости в трубу на ее стенках образуется ламинарный пограничный слой, который по мере удаления от входа утолщается и на некотором расстоянии от него заполняет все сечение трубы.  [c.186]

Переходный режим. Между верхней границей области ламинарного режима движения и нижней границей турбулентного в трубах существует область переходного реЖима. Если число Рейнольдса для потока в трубе равно Re 2-10 , то установится ламинарный режим, если же Re l-lO , то —турбулентный. Однако даже при малых числах Рейнольдса режим движения может стать турбулентным на большом расстоянии от входа в трубу, например при A /d 500 это происходит уже при Re 2,6-10  [c.190]

На рис. 29.2 показана схема свободного движения воздуха около нагретых горизонтальных труб различных диаметров. В случае малого диаметра (d = 28 мм) восходящий поток сохраняет ламинарный режим даже в области, расположенной над трубой. При большом диаметре (d = 250 мм) переход в турбулентный режим происходит в пределах поверхности. Следовательно, когда размеры тела по высоте незначительны, то ламинарный характер восходящего потока может сохраняться на всем протяжении поверхности тела.  [c.353]

Объясняя указ анное выше явление, Б. И. Китаев сделал [82] маловероятное предположение, что турбулентный поток, потеряв при выходе из сопла контакт со стенками, как бы успокаивается и дает ламинарный режим горения, без заметных завихрений, в отличие от вызывающих неспокойное горение факела крупных завихрений, свойственных турбулентному режиму. Развивая эти взгляды Б. И. Китаев и П. В. Левченко в дальнейшем приходят к более правильному выводу, что число Re, рассчитанное для выходного сечения сопла, вообще не может характеризовать режим горения в факеле, поскольку взаимодействие сил инерции и торможения в открытой струе принципиально отлично от такого взаимодействия для потока в трубах.  [c.119]

По мере увеличения скорости данного газа в данной трубе ламинарный режим потока переходит в турбулентный, при котором в ядре потока происходит завихрение. Вследствие этого фактическая скорость по оси трубы лишь немного превышает среднюю скорость, в пограничном же слое происходит весьма быстрое падение скорости до нуля (рис. 107).  [c.187]


При Re < Re наблюдается ламинарный режим течения. Для изотермического потока в трубе круглого сечения критическое значение числа Рейнольдса Re = 2300.  [c.213]

Вначале при соблюдении равенств (а) и (б) весь поток жидкости движется целиком как твердое тело с одинаковой скоростью но всему поперечному сечению. По мере увеличения разности напоров АЯ возрастает и скорость движения жидкости. В ближайших к стенкам трубы частях потока развивается ламинарный режим, а в центральной части (так называемом центральном ядре) жидкость по-прежнему продолжает двигаться как твердое тело. Такой режим движения, характеризующийся наличием центрального ядра, называется структурным.  [c.249]

Турбулентный режим течения. Теоретический анализ турбулентного потока в трубах основывается на использовании общей зависимости (1.1.12) для эффективных касательных напряжений, однако обоснование расчетных зависимостей здесь оказывается значительно более сложным, чем для ламинарного течения, поскольку на силы сопротивления турбулентного потока существенно влияет пристенная область течения, имеющая очень сложный характер. Поэтому существующие расчетные зависимости для турбулентного потока имеют структуру, следующую из теоретических представлений, однако обязательно включают в себя эмпирические коэффициенты, получаемые экспериментально.  [c.17]

Второй режим имеет место при достаточно больших значениях чисел Re. Здесь высота бугорков шероховатости значительно больше толщины ламинарного подслоя, т. е. А > б ,. Как видно из рис" XI. 14, б, бугорки обтекаются турбулентным потоком как плохо обтекаемые тела с образованием отрывных зон. Коэффициент сопротивления плохо обтекаемых тел не зависит от числа Re, и при этом в трубах устанавливается режим, который можно назвать режимом развитой шероховатости или областью квадратичной зависимости сопротивления от скорости. Коэффициент сопротивления при этом режиме зависит только от относительной шероховатости.  [c.285]

Основываясь на некоторых теоретических соображениях, а также на результатах опытов, Рейнольдс установил общие условия, при которых возможны существование ламинарного и турбулентного режимов движения жидкости и переход от одного режима к другому. Оказалось, что состояние (режим) потока жидкости в трубе  [c.152]

Верхнее критическое число Рейнольдса изменяется в довольно широких пределах. Переход в турбулентный режим зависит (помимо скорости движения, вязкости и размера живого сечения потока) от ряда факторов, а именно от возмущений, создаваемых у источников питания трубопровода, от резкого изменения скорости, от шероховатости стенок трубы, от местных сопротивлений и т. д. В лабораторных условиях удавалось сохранить ламинарный режим в трубопроводе при числах Рейнольдса, превышающих 12 000. Это обстоятельство необходимо иметь в виду при решении практических задач.  [c.52]

При выполнении соответствующих опытов (рис. 3-40), оградив опытную установку от возможных сотрясений, обеспечив плавный вход жидкости в трубу и т. п., мы можем, постепенно увеличивая скорости v в трубе Т, затянуть существование ламинарного режима до некоторой скорости ri, где v[. > Vg. Однако ламинарный режим при соотношениях г < г< и, является неустойчивым в этом случае при малейшем возмущении потока (например, при сотрясении трубы Т) ламинарный режим может разрушиться и перейти в турбулентный. Скорость ri иногда называют верхней критической скоростью. Величина ее неопределенна (зависит от условий проведения опытов).  [c.128]

Заметим, что когда турбулентные области в трубе разрастаются, растет и сопротивление движению жидкости (в связи с ростом турбулентных касательных напряжений трения), при этом скорость и уменьшается. Как только она делается меньше критической скорости, разросшиеся турбулентные области обращаются в ламинарные (или выносятся за пределы рассматриваемой части потока) после этого в связи с уменьшением потерь напора (обусловленным переходом турбулентного режима в ламинарный на отдельных участках трубы) скорость v увеличивается, причем турбулентные области снова, появляются и т. д. В связи с таким характером движения в переходной зоне, представить это движение на графике какими-либо определенными кривыми нет возможности. Исключение здесь могут составить только случаи, когда ламинарный режим затягивается и имеет место по длине всего трубопровода (см. прямую 2-3) или, когда в связи с особыми условиями движения турбулентный режим имеет место по длине всего трубопровода (см. линию 5 — 6).  [c.162]


Обобщенной характеристикой, определяющей режим течения любой жидкости в трубах (каналах), является критерий Рейнольдса Ре — wd.lv. При Ре 2300 режим течения ламинарный, при Ре > 10 устанавливается устойчивый турбулентный режим. Режим течения в области 2.300 < Ре < 10 называется переходным. В этом случае в потоке жидкости могут сосуществовать как ламинарная, так и турбулентная области.  [c.208]

Гидродинамические условия развития процесса. При вынужденном движении жидкости внутри трубы различают два режима течения ламинарный и турбулентный. Ламинарный режим наблюдается при малых скоростях движения жидкости. При скоростях потока, больших некоторого значения Шкр, режим течения переходит в турбулентный. Для различных жидкостей и трубопро-  [c.73]

Вязкостный режим. Вязкостный или ламинарный режим течения жидкости (газа) в трубах наблюдается при значениях Re < Re , и при отсутствии в вынужденном потоке естественной конвекции. Последнее условие приближенно выполняется, если число Ог Рг меньше некоторого предельного значения, указанного ниже.  [c.214]

В области чисел Re от 2000 примерно до 5000 режим течения жидкости в трубе отличается от режима течения при больших значениях критерия Рейнольдса, когда уже имеет место полностью развитое турбулентное течение в основной массе потока. В указанной области, переходной от ламинарного режима течения к развитому турбулентному, имеет место непрерывное возрастание степени турбулентности потока с ростом числа Re.  [c.212]

Ламинарный режим в круглой цилиндрической трубе характеризуется тем, что скорость потока плавно возрастает по мере  [c.187]

При небольшой степени открытия крана 6 обеспечиваются низкие скорости течения воды в трубе 5. Если в этом случае кран 3 также открыт, то можно наблюдать струйку краски, двигающуюся в потоке воды (рис. 4.3, б). При малых скоростях течения она не перемешивается с основным потоком. Это говорит о том, что соседние струйки воды движутся также самостоятельно , не перемешиваясь друг с другом. Такой режим течения принято называть ламинарным.  [c.31]

Перейдем к рассмотрению теплоотдачи при турбулентном движении жидкости в трубе. Развитый турбулентный режим течения в трубе осуществляется при Re lOOOO. В диапазоне 2300Re1 O в трубе наблюдается переходный режим течения — неустойчивый режим, характеризующийся сменой ламинарного и турбулентного потока. Такое состояние характеризуется так называемым коэффициентом перемежаемости, O io l, представляющим собой относительное время существования турбулентного потока величина 1—со приходится на долю ламинарного потока. Надежные рекомендации по расчету теплоотдачи при переходном режиме пока не разработаны. Поэтому возможны лишь оценки по минимальному и максимальному коэффициентам теплоотдачи для ламинарного и турбулентного режимов соответственно с учетом коэффициента перемежаемости.  [c.386]

В зависимости от режима течения различают ламинарный и турбулентный пограничные слои. По мере развития пограничного слоя толщина его возрастает. Пока она мала, течение в пограничном слое будет ламинарным, лаже если внешний поток турбулентный. Режим течения в пограничном слое так же, как для потока в трубах и каналах, может характеризоваться величиной числа Рейнольдса, составленного по толщине б пограничного слоя, скорости щ внешнего потока и кинематическому коэффициенту вязкости v. С увеличением толщины б число Рейнольдса в некоторой точке может достигнуть критического значения. За этим сечением формируется турбулентный пограничный слой. Таким образом, в общем случае при безотрывном обтекании некоторой твердой поверхности потоко.м имеет место сочетание ламинарного и турбулентного пограничных слоев.  [c.74]

До значений Re = 2300 поток жидкости в трубе остается ламинарным, при больших значениях Re поток переходит в турбулентный. Ламинарный поток является устойчивым только в докрити-ческой области (до Re = 2300). При некоторых специальных мерах предосторожности ламинарное движение можно наблюдать при числах Re, значительно превышающих критическое. Однако такой режим движения является неустойчивым и при малейшем возмущении потока переходит в турбулентный.  [c.403]

В случае потоков, движущихся в трубах круглого сечения, ламинарный режим имеет место при Re Нскр = 2300 [см. формулу (19)], т. е. в тех случаях, когда в потоке определяющими силами являются силы вязкости.  [c.81]

Ламинарный режим течения имеет место только при числах Рейнольдса, меньших своего критического значения. Согласно опытам в трубах критическое число Рейнольдса приближенно равно R p = = 2300. Однако несУбходи-мо иметь в виду, что величина R p в значительной мере зависит от условий течения и в первую очередь от начальной турбулентности втекающего потока. В специальных экспериментах, где турбулентность внешнего потока была незначительной, удалось сохранить ламинарный режим течения до значительно больших, чем критическое, значений чисел Рейнольдса.  [c.350]

Основываясь на некоторых теоретических соображениях (см. далее гл. XVII), а также на результатах опытов, Рейнольдс установил общие условия, при которых возможны существование ламинарного и турбулентного режима движения жидкости и переход от одного режима к другому. Оказалось, что состояние (режим) потока жидкости в трубе зависит от величины безразмерного числа, которое учитывает основные факторы, определяющие это движение среднюю скорость v, диаметр трубы d, плотность жидкости р и ее абсолютную вязкость ц. Это число (позже ему было присвоено название числа Рейнольдса) имеет вид  [c.149]


Рассмотрим теплоотдачу в трубе с ленточным завихрителем, схема которой показана на рис. 8.8. Закрутка потока приводит к появлению неоднородного поля массовых сил в поперечном сечении потока, которое имеет много общего с полем массовых сил в змеевике. Канал, образованный ленточным завихрителем и стенкой трубы, представляет собой змеевик с поперечным сечением в форме полукруга. Поэтому в закрученном потоке, как и в змеевике, возникает парный вихрь (рис. 8.8), а режим течения может быть ламинарным, ламинарным с макровихрями и турбулентным.  [c.352]

Кроме конфигурации граничных поверхностей необходимо учитывать влияние режимов движения жидкости па величину и механизм, потерь. Как известно из гл. 2 и 5, кинематические структуры ламинарного ji турбулентного потоков различны турбулентные пулбсащш "Гпорождают добавочные касательные напряжения, которые вызывают увеличение потерь энергии в турбулентных потоках по сравнению с ламинарными при сопоставимых условиях. Для оценки потерь важно знать условия перехода ламинарного течения в турбулентное. Этот вопрос рассмотрен в п. 6.6. Здесь укажем только на классический опыт О. Рейнольдса, который, наблюдая поведение подкрашенных струек жидкости в стеклянной трубке, установил сугцествование критического значения числа Re =-- vdh, определяющего границу между ламинарным и турбулентным режимами. Если для круглых труб число Рейнольдса определять по формуле Re = vdiv (где а — средняя скорость потока d—диаметр трубы), то, как показали опыты О. Рейнольдса и других исследователей, при Re < Re p = = 2300 наблюдается устойчивый ламинарный режим, при Re >  [c.140]

При возрастании числа Re турбулентный режим в каждом сечении существует все более длительное время, и, наконец, поток становится стацио1[арно турбулентным. Появление турбулентных очагов наступает тем раньше, чем больше возмущеннй испытывает поток при входе в трубу. Если вход сделать плавным и устранить другие источники возмущений, то ламинарный режим можно получить при больших числах Re. Так были получены ламинарные режимы при Re = 20 ООО и даже при Re = 40 ООО. Однако такие затянутые ламинарные режимы оказывались неустойчивыми, т. е. внесение в поток даже очень малых возмущений приводило к турбулизации. Поэтому критическое значение числа Рейнольдса следует понимать как границу устойчивого ламинарного режима в том смысле, что при Re < Re p любые внешние возмущения, вносимые в поток, будут с течением времени затухать и поток сохранит ламинарный характер . При Re >  [c.156]

Описанный в этом параграфе характер течения и соответствующие ему зависимости имеют место только при устойчивом ламинарном режиме, т. е. при Re < Re p. При значениях Re > R kp возможно нарушение ламинарного характера течения и возникновение турбулентности. Механизм перехода от ламинарного течения к турбулентному достаточно сложен и, несмотря на многочисленные исследования, выяснен не полностью. Тем не менее можно дать хотя и схематичное, но достаточно близкое к реальной картине описание движения при околокритических числах Re, Так, при числах Re, немного меньших Квкр, в ламинарном потоке периодически появляются кратковременные очаги турбулентности, которые могут на отдельных участках заполнять все сечение потока, образуя турбулентные пробки . Этот переходный процесс можно характеризовать долей А/ некоторого интервала времени Т, в течение которой в данной точке потока существует турбулентный режим. Величину у = At/T называют коэффициентом перемежаемости. По мере возрастания числа Рейнольдса, а также при удалении от входа в трубу величина у непрерывно возрастает.  [c.167]

Число Рейнольдса, при котором один режим переходит в другой, называется критическим. Существуют нижнее и верхнее критические числа Рейнольдса, т. е. до Некр.н=2320 — устойчивое ламинарное движение, а после Нкр.в= 13800 — устойчивое турбулентное. В инженерных расчетах для труб круглого сечения принимают значение Некр = 2320, а для потоков, где характерный линейный размер выражен через гидравлический радиус,— Кекр = 580.  [c.35]

Число Рейнольдса является важне11шей характеристикой движения жидкости, по нему судят о режиме течения потока. При Re < Re p имеет место ламинарный режим, при котором существенное влияние на характер потока оказывает вязкость жидкости, сглаживающая мелкие пульсации скорости. При Re > Re,.p имеет место турбулентный режим, при котором большее влияние на характер потока оказывают силы инерции. Величина Re p зависит от многих факторов шероховатости поверхности стенок, условий входа в трубу, вибрации и пр.  [c.286]

При возникновении движения вязкопластичных жидкостей в трубе касательное напряжение в пристенных слоях достигает предельного напряжения сдвига. При этом вся масса жидкости начинает двигаться, скользя по пристенным слоям как твердое тело. Такой вид течения называется структурным центральная часть потока, движущаяся с сохранением своего строения, называется ядром потока. По мере увеличения скорости толщина пристенного градиентного слоя будет увеличиваться, а диаметр ядра уменьшаться. При этом скорость частиц жидкости в слое меняется от нуля у стенки до скорости ядра. При некоторой скорости градиентный слой займет все сечение трубы и структурный режим перейдет в ламинарный. Во время перехода от структурного движения к ламинарному струйное течение градиентного слоя может нарущаться такой режим называется квазиламинарным.  [c.305]

Критическое число Рейнольдса определяется экспериментально и зависит от большого числа различных факторов. Явление этого перехода изучалось Г. Хагеном (1839 г.), Д. И. Менделеевым (1880 г.), однако систематические исследования возникновения турбулентного течения с установлением критерия перехода были проведены О. Рейнольдсом в 1883 г. для потока в круглой трубе. Критерием перехода оказался установленный анализом единиц измерения комплекс ршс11 1, где w — осредненная по поперечному сечению скорость, ай — диаметр трубы. Последующими многочисленными исследованиями было установлено существование двух чисел Рейнольдса — верхнего и нижнего. Нижнее значение равно примерно 2300 если Ке=ршй/р, 2300, то устойчивость ламинарного течения невозможно нарушить никакими возмущениями. В качестве верхнего числа Рейнольдса обычно принимают значение Ре=10 000, при котором в трубах с технической шероховатостью устанавливается развитое турбулентное течение. Однако в гладких трубах с плавным входом и отсутствием возмущений удавалось затягивать ламинарный режим до значительно больших значений Ре.  [c.357]

Основное различие в подходах к решению задачи теплообмена при конденсации на вертикальной поверхности и в вертикальной трубе в условиях ламинарного режима течения пленки конденсата под совместным действием гравитационных сил, и касательных напряжений, возникающих на границе раздела фаз, заключается в способах определения и учета сил, действующих на пленку. Для упрощения решения, а также в связи со слабой изученностью влияния парового потока на движение пленки конденсата и теплоперенос в ней обычно пренебрегают влиянием того или иного фактора сил тяжести [6.40— 6.42], поперечного потока пара [6.43, 6.44 и др.] и т. д. Однако почти все работы по конденсации движущегося пара имеют характерный недостаток — касательные напряжения на границе раздела фаз определяются по формулам, рекомендуемым для сухих гладких или шероховатых поверхностей [6.44—6.48] и справедливым для двухфазного кольцевого течения лишь в случае чрезвычайно малой толщйны пленки, когда отсутствует волновой режим течения или амплитуда волн не превышает толщины ламинарного слоя парового потока. В остальных случаях волнового режима сопротивление трения во много раз превышает сопротивление для гладкой твердой поверхности, что должно соответствующим образом отразиться на характере течения пленки и теплопереноса в ней. Имеющиеся расчетные рекомендации по теплообмену в рассматриваемой области удовлетворительно обобщают опытные данные, по-видимому, за счет корректирующих эмпирических поправок. Поэтому естественно расхождение расчетных и опытных данных, полученных при конденсации паров веществ с иными теплофизическими свойствами и отношением Re VRe, даже при соблюдении внешних условий (Re", АГ, q,P).  [c.158]



Смотреть страницы где упоминается термин Ламинарный режим потоков в трубах : [c.319]    [c.382]    [c.135]    [c.37]    [c.24]    [c.168]    [c.187]    [c.353]    [c.78]    [c.191]   
Смотреть главы в:

Справочник металлиста. Т.1  -> Ламинарный режим потоков в трубах

Справочник металлиста Том 1 Изд.3  -> Ламинарный режим потоков в трубах



ПОИСК



Ламинарное те—иве

Поток в трубе

Режим ламинарный



© 2025 Mash-xxl.info Реклама на сайте