Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон сохранения механической энергии точки

Закон сохранения механической энергии точки  [c.351]

Таким образом, при движении точки в стационарном потенциальном силовом поле ее полная механическая энергия остается постоянной величиной, что является законом сохранения механической энергии для точки, который и есть первый интеграл дифференциальных уравнений движения точки.  [c.351]


Во-вторых, имеет место закон сохранения механической энергии, поскольку система является консервативной в системе действует только одна сила, зависящая от положения точки, и  [c.83]

Закон сохранения механической энергии. Если все силы, приложенные к системе материальных точек, потенциальны, то сумма кинетической и потенциальной энергий системы постоянна  [c.333]

Так как в механизмах и машинах действуют силы сопротивления, которые не потенциальны, то происходит уменьшение механической энергии. Эта энергия расходуется на работу непотенциальных сил и переходит в другие виды энергии (например, в тепловую). Следовательно, закон сохранения механической энергии в этих случаях неприменим, и для поддержания установившегося режима работы машины или механизма необходим приток механической энергии извне.  [c.333]

Так, например, закон сохранения механической энергии справедлив при движении планет в поле ньютонианского тяготения чем ближе к Солнцу находится планета на своей эллиптической орбите, тем меньше ее потенциальная энергия и соответственно больше кинетическая (см. 36 — закон площадей). Скорость периодических комет, движущихся по очень вытянутым эллипсам, в перигелии во много раз превышает их скорость в афелии, но в любой точке орбиты сумма кинетической и потенциальной энергий кометы есть для этой кометы величина постоянная.  [c.242]

Если на твердое тело действуют силы потенциального поля, то первым интегралом будет, справедливый в этом случае, закон сохранения механической энергии  [c.181]

Связи, наложенные на гироскоп, при отсутствии трения в закрепленной точке являются идеальными и стационарными. Сила тяжести, действующая на него, является потенциальной. При этих условиях справедлив закон сохранения механической энергии (интеграл энергии)  [c.488]

Иногда оказывается, что невозможно найти пределы j и если рассматривать произвольные возмущения Ej и . Но можно найти эти пределы, если возмущения удовлетворяют некоторым условиям. Так возникло понятие об относительной устойчивости. Например, движение материальной точки по окружности будет устойчивым относительно прямоугольной системы координат, если наложить на возмущения движения условия, вытекающие из закона сохранения механической энергии, или, по терминологии Томсона и Тета, оно будет устойчивым для консервативных возмущений.  [c.327]


Работа реакций f i и Л/ равна нулю, так как с точностью до малых второго порядка перемещение точки их приложения в каждый момент времени обращается в нуль. Принимая, что цилиндр начал движение из состояния покоя, по закону сохранения механической энергии получаем  [c.266]

Если система подчинена идеальным стационарным связям, то в действительном ее движении работа реакций связей равна нулю. Следовательно, к такого рода движениям применим закон сохранения механической энергии  [c.339]

Уравнение (4) выражает закон сохранения механической энергии для материальной точки если сила, действующая на материальную точку, консервативна, то полная механическая энергия этой точки остается во все время движения в потенциальном силовом поле постоянной.  [c.666]

Сказанное в 108 по отношению к отдельной материальной точке можно обобщить и на механическую систему материальных точек. Поэтому мы можем аналогичным образом сформулировать и доказать теорему о законе сохранения механической энергии для механической системы. Для вывода этой теоремы напомним, что теорема об изменении кинетической энергии механической системы записывается так (29, 107)  [c.667]

Уравнение (8) выражает закон сохранения механической энергии для механической системы если внешние и внутренние силы, действую-ш,ие на механическую систему, консервативны, то полная механическая энергия системы остается во все время движения постоянной. Происходит лишь превращение одного вида энергии в другой — потен-  [c.668]

Так как в рассматриваемом случае центральная сила Р зависит только от расстояния движущейся точки В от центра О силы Р, то имеет место закон сохранения механической энергии  [c.677]

Иначе обстоит дело с кинетической энергией, которая в разных системах отсчета имеет различное значение. Поэтому механическая энергия системы тел, равная сумме кинетической и потенциальной энергией, не одинакова в разных инерциальных системах отсчета и отличается на некоторую постоянную величину. Но если в одной из систем отсчета механическая энергия замкнутой системы тел постоянна, то нетрудно доказать, что она будет оставаться постоянной и в любой другой инерциальной системе отсчета, т. е. закон сохранения механической энергии справедлив для любой инерциальной системы отсчета. Не только кинетическая энергия те-ла, но и разность кинетических энергий этого тела изменяется при переходе от одной инерциальной системы отсчета к другой. Поэтому работа, совершаемая внешней силой и равная изменению кинетической энергии тела, не одинакова в разных инерциальных системах отсчета.  [c.82]

Эю равенство является математическим выражением закона сохранения механической энергии, который формулируется так при движении материальной точки под  [c.154]

Если тело линейно-упругое и изотропное, то А определяется по формуле (4.36). Таким образом, работа внешних сил расходуется на возникновение кинетической энергии тела и потенциальной энергии деформации. Формула (4.57) представляет закон сохранения механической энергии.  [c.73]

Следовательно, уравнение Бернулли выражает закон сохранения механической энергии при движении идеальной жидкости сумма потенциальной и кинетической энергий при движении жидкости неизменна. Изменение одного вида энергии приводит к противоположному изменению другого. Так, если при горизонтальном движении жидкости уменьшилась ее кинетическая энергия (за счет уменьшения скорости), то удельная потенциальная энергия увеличилась на такую же величину.  [c.279]

Здесь Цд (г) — динамический прогиб, (г) — статический прогиб под действием силы Р, приложенной з точке z = г , — коэффициент динамичности. Решение задачи получим, используя закон сохранения механической энергии, согласно которому в любой момент движения консервативной системы сумма кинетической энергии системы и е потенциальной энергии Е есть величина постоянная  [c.288]


Так как внутренние связи системы упругие, а внешняя нагрузка консервативна, то закон сохранения механической энергии применим к рассматриваемой задаче. За первое положение системы возьмем ее недеформированное состояние и исходное положение груза на высоте Н над балкой. За нулевой уровень потенциальной энер-  [c.288]

Таким образом, с энергетической точки з рения уравнение Бернулли можно сформулировать так при установившемся движении невязкой несжимаемой жидкости вдоль трубки тока сумма удельных энергий — потенциальной (положения и давления) и кинетической — есть величина постоянная. Иначе говоря, уравнение Бернулли выражает собой закон сохранения механической энергии применительно к жидкости.  [c.98]

Следует иметь в виду, что для справедливости закона сохранения механической энергии требование о том, чтобы все силы системы были потенциальными, не обязательно. Достаточно потребовать, чтобы потенциальными были силы, работа которых на действительном перемещении системы отлична от нуля. Например, работа реакций стационарных идеальных связей равна нулю, и если остальные силы системы потенциальны и потенциал не зависит явно от времени, то для такой системы справедлив закон сохранения механической энергии.  [c.168]

Сумма кинетической и потенциальной энергии называется полной механической энергией системы интеграл энергии в форме (31.42) выражает закон сохранения механической энергии системы. Если в последнее равенство ввести начальные данные, г. е. значения и Vq кинетической и потенциальной энергии для некоторого начального момента времени, то его можно переписать так  [c.316]

Материальные системы, к которым прилагается закон сохранения механической энергии, носят название консервативных систем. Следовательно, если для связей системы соблюдаются условия (31.36), а для активных сил условие (31.38), причём функция U зависит только от координат и притом однозначно, то система консервативна.  [c.316]

Если силы имеют потенциал, то имеет место закон сохранения механической энергии  [c.397]

Роль наложенных связей — та же, что в случае точки. При движении в потенциальном поле имеет место закон сохранения механической энергии  [c.400]

Если при движении и деформации тела не происходит взаимного превращения механической энергии и других видов энергии, а процесс является адиабатическим, то (V.33) принимает вид dE — d U W ) = d/4n + dAn и выражает закон сохранения механической энергии. Сравнивая с (V.29), найдем, что в этом случае dlJ = dA , т. е. приращение внутренней энергии тела равно элементарной работе внутренних сил. Такой случай имеет место, например, при упругой деформации.  [c.149]

Если для элементарной струйки идеальной жидкости уравне ние Бернулли представляет собой закон сохранения механическо энергии, то для потока реальной жидкости оно является уравне нием баланса энергии с учетом потерь. Механическая энергия теряемая жидкостью на рассматриваемом участке течения, не ис чезает бесследно, а превращается в тепловую. Так как удельна теплоемкость жидкости обычно велика по сравнению с потерям удельной энергии и тепловая энергия непременно рассеивается повышение температуры жидкости малозаметно. Процесс преоб разования механической энергии в тепловую является необрати мым — превращение тепловой энергии в механическую невоз можно.  [c.64]

В качестве доказательства ограничимся следующими рассуждениями. Для консервативной системы имеет место закон сохранения механической энергии, т. е. T+n= onst, где Т — кинетическая, а П — потенциальная энергия системы. Поэтому, если в положении равновесия П=Пп11п, то когда система после малого возмущения придет в движение и будет удаляться от положения равновесия, значение П должно возрастать и, следовательно, Т будет убывать. Однако при возрастании П не может стать больше некоторой величины Ili=nn,jn+An, которая получится, когда Т обратится в нуль. Учтя это, можно начальные возмущения, а с ними и значение ДП сделать столь малыми, что когда у системы П=Пт +ДП ее отклонение от равновесного положения будет меньше любого сколь угодно малого заданного. Отсюда и следует, что равновесное положение является устойчивым.  [c.387]

Таким образом, если материальная частица движется в потенциальном поле под действием сил этого поля, то во всякое мгновение при всяком положении частицы сумма ее кинетической и потенциальной энергий есть величина постоянная. Равенство (247) выражает закон сохранения механической энергии и имеет применение в тех случаях, если на частицу не действуют никакие силы, кроме сил потенциального поля. Поэтому потенциальные поля называют также консервативными (от лат. onservativus — сохраняющий).  [c.396]

Так как связь, наложенная на маятник, стационарна и силы, под действием которых происходит его движение, потенциальны, то имеет место закон сохранения механической энергии, который можно получить, если умножить уравнение (125.41) на d(fldt  [c.184]

Закон сохранения механической энергии Если T2-T1 = Hi - Hi, то Т + П = onst  [c.171]

На основании закона сохранения механической энергии нетрудно доказать, что если тело боросить с поверхности Земли вертикально вверх, то его кинетическая энергия в нижнем положении будет равна потенциальной энергии в наивысшем положении.  [c.155]

Это известны11 закон сохранения механической энергии для консервативных систем. Если задача статическая, то из выражения (9.25) легко установить, что полная энергия системы равна ее потенциальной энергии.  [c.197]


Пример 9.4. Используем закон сохранения механической энергии для определения наибольших напряжений в трехстержневой ферме (см. рис. 3.19) при внезапном приложении к ней в точке соединения стержней силы F (груз весом G = F мгновенно подвешивается к ферме). Потенциальная энергия механической системы определяется с точностью до постоянного слагаемого, и нулевой ее уровень можно выбрать в исходном ненагруженном состоянии. Таким образом, Е о = = 0. В этом положении начальная скорость груза равна нулю. Поэтому кинетическая энергия Бко= 0. Таким образом, в силу закона сохранения механической энергии для любого другого положения 1  [c.199]


Смотреть страницы где упоминается термин Закон сохранения механической энергии точки : [c.341]    [c.392]    [c.320]    [c.140]    [c.86]    [c.168]   
Смотреть главы в:

Курс теоретической механики  -> Закон сохранения механической энергии точки



ПОИСК



Закон изменения и закон сохранения механической энергии материаль ной точки

Закон механической энергии

Закон сохранения

Закон сохранения механической энергии

Закон сохранения механической энергии материальной точки и механической системы при движении в потенциальном силовом поле

Закон сохранения энергии

Закон точки

Механическая энергия точки

Сохранение

Сохранение механической энергии

Сохранение энергии

Энергия механическая



© 2025 Mash-xxl.info Реклама на сайте