Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон сохранения механической энергии системы

Закон сохранения механической энергии системы  [c.351]

Из этого уравнения, в свою очередь, вытекает закон сохранения механической энергии системы  [c.99]

Сумма кинетической и потенциальной энергии называется полной механической энергией системы интеграл энергии в форме (31.42) выражает закон сохранения механической энергии системы. Если в последнее равенство ввести начальные данные, г. е. значения и Vq кинетической и потенциальной энергии для некоторого начального момента времени, то его можно переписать так  [c.316]


Пусть системе сообщили соответствующие начальные обобщенные координаты и скоросги и она движется. При движении консервативной системы, удовлетворяющей связям, указанным в условии теоремы, справедлив закон сохранения механической энергии  [c.424]

Следовательно, при движении под действием потенциальных сил сумма кинетической и потенциальной, энергий системы в каждом ее положении остается величиной постоянной. В этом и состоит закон сохранения механической энергии, являющийся частным случаем общего физического закона сохранения энергии. Величина  [c.321]

Во-вторых, имеет место закон сохранения механической энергии, поскольку система является консервативной в системе действует только одна сила, зависящая от положения точки, и  [c.83]

В предыдущих главах мы уже встречались с понятием первого интеграла уравнений движения. Роль таких первых интегралов играли различные функции, которые во время движения не изменяются в силу законов сохранения — закона сохранения количества движения (импульса), закона сохранения момента количества движения (кинетического момента системы), закона сохранения механической энергии и т. д. Формулы, выражающие  [c.265]

Закон сохранения механической энергии для консервативной системы. Рассмотрим консервативную (или обобщенно консервативную) систему. В качестве семейства преобразований (66) возьмем сдвиг по времени  [c.290]

Закон сохранения механической энергии. Если все силы, приложенные к системе материальных точек, потенциальны, то сумма кинетической и потенциальной энергий системы постоянна  [c.333]

При движении тела вблизи земной поверхности на тело кроме силы тяжести действуют различные диссипативные силы, например сила сопротивления воздуха, поэтому закон сохранения механической энергии здесь неприменим происходит рассеяние механической энергии, переход ее в другие немеханические виды. Вместе с тем и немеханические виды энергии могут переходить в механическую энергию. Переход не только механической, но и всякой другой энергии из данного вида в эквивалентное количество энергии всякого другого вида подчинен всеобщему закону сохранения и превращения энергии, изучаемому в курсах физики. Согласно этому закону во всякой изолированной системе сумма энергий всех видов (кинетической, потенциальной, тепловой, электрической и т. п.) остается постоянной.  [c.242]


Механические системы, для которых справедлив закон сохранения механической энергии, называются консервативными.  [c.72]

Формула (91) выражает закон сохранения механической энергии для системы полная механическая энергия при движении системы в потенциальном силовом поле внешних и внутренних сил является постоянной величиной.  [c.314]

Это соотношение [первый интеграл системы (2)], в котором постоянная обозначена 2/г, выражает закон сохранения механической энергии Т -)- Я = /г, где потенциальная энергия Я — постоянная величина, принята равной нулю.  [c.464]

Таким образом, 5 характеризует соотношение между кинетической и потенциальной энергиями системы при ее движении. Другое соотношение следует из закона сохранения механической энергии для консервативной системы Т 4-П = 1г.  [c.405]

Это соотношение [первый интеграл системы (21)], в котором постоянная обозначена 2h, выражает закон сохранения механической энергии Т П = 1, где П — потенциальная энергия — постоянная, принятая равной нулю.  [c.484]

Иногда оказывается, что невозможно найти пределы j и если рассматривать произвольные возмущения Ej и . Но можно найти эти пределы, если возмущения удовлетворяют некоторым условиям. Так возникло понятие об относительной устойчивости. Например, движение материальной точки по окружности будет устойчивым относительно прямоугольной системы координат, если наложить на возмущения движения условия, вытекающие из закона сохранения механической энергии, или, по терминологии Томсона и Тета, оно будет устойчивым для консервативных возмущений.  [c.327]

Если система подчинена идеальным стационарным связям, то в действительном ее движении работа реакций связей равна нулю. Следовательно, к такого рода движениям применим закон сохранения механической энергии  [c.339]

Сказанное в 108 по отношению к отдельной материальной точке можно обобщить и на механическую систему материальных точек. Поэтому мы можем аналогичным образом сформулировать и доказать теорему о законе сохранения механической энергии для механической системы. Для вывода этой теоремы напомним, что теорема об изменении кинетической энергии механической системы записывается так (29, 107)  [c.667]

Уравнение (8) выражает закон сохранения механической энергии для механической системы если внешние и внутренние силы, действую-ш,ие на механическую систему, консервативны, то полная механическая энергия системы остается во все время движения постоянной. Происходит лишь превращение одного вида энергии в другой — потен-  [c.668]

Как выводится и формулируется закон сохранения механической энергии механической системы  [c.185]

Иначе обстоит дело с кинетической энергией, которая в разных системах отсчета имеет различное значение. Поэтому механическая энергия системы тел, равная сумме кинетической и потенциальной энергией, не одинакова в разных инерциальных системах отсчета и отличается на некоторую постоянную величину. Но если в одной из систем отсчета механическая энергия замкнутой системы тел постоянна, то нетрудно доказать, что она будет оставаться постоянной и в любой другой инерциальной системе отсчета, т. е. закон сохранения механической энергии справедлив для любой инерциальной системы отсчета. Не только кинетическая энергия те-ла, но и разность кинетических энергий этого тела изменяется при переходе от одной инерциальной системы отсчета к другой. Поэтому работа, совершаемая внешней силой и равная изменению кинетической энергии тела, не одинакова в разных инерциальных системах отсчета.  [c.82]

В процессе колебаний энергия, сообщенная системе вначале, при выведении ее из положения равновесия претерпевает в дальнейшем повторяющиеся превращения. При этом кинетическая энергия колеблющегося тела преобразовывается в потенциальную энергию взаимодействия частей системы, и наоборот. По закону сохранения механической энергии, в процессе колебаний полная энергия системы должна оставаться постоянной  [c.166]


Механические системы, для которых выполняется закон- сохранения механической энергии, называются консервативными (консервативными называются в этом случае и потенциальное силовое поле, в котором происходит движение системы, и силы).  [c.239]

С помощью этого закона изменения механической энергии системы относительно инерциальной системы отсчета получим закон сохранения механической энергии системы. Действительно, если потенциальная энергия системы во внешних полях явно от времени не зависит, а диссипативные силы внешние и внутренние) отсутст-еуют, т. е. если  [c.109]

Кинетическая энергия системы может быть только положи-гельиой. Поэтому из закона сохранения механической энергии получаем следующее неравенство для потенциальной энергии  [c.423]

В качестве доказательства ограничимся следующими рассуждениями. Для консервативной системы имеет место закон сохранения механической энергии, т. е. T+n= onst, где Т — кинетическая, а П — потенциальная энергия системы. Поэтому, если в положении равновесия П=Пп11п, то когда система после малого возмущения придет в движение и будет удаляться от положения равновесия, значение П должно возрастать и, следовательно, Т будет убывать. Однако при возрастании П не может стать больше некоторой величины Ili=nn,jn+An, которая получится, когда Т обратится в нуль. Учтя это, можно начальные возмущения, а с ними и значение ДП сделать столь малыми, что когда у системы П=Пт +ДП ее отклонение от равновесного положения будет меньше любого сколь угодно малого заданного. Отсюда и следует, что равновесное положение является устойчивым.  [c.387]

В случае абсолютно твердого тела работа всех внутренних сил равна нулю и, следовательно, потенциальная энергия внутренних сил является постоянной величиной, которую можно считать равной нулю. Тогда в (91) за потенциальную энергию следует принять только потенциальную энергию внешних сил, которая вместе с ки] етической энергией является постоянной величиной. При движении изменяемой механической системы сумма кинетической энергии системы и потенциальной энергии внешних сил не является постоянной величиной. Она становится постоянной величиной только в.месте с потенциальной энергией внутренних сил. 1Механпческие системы, для которых выполняется закон сохранения механической энергии, называют консервативными.  [c.314]

Таким образом, величина 5 характер 1зует соотношение между кинетической и потенциальной энергией системы при се дзижешш. Другое соотношение следует из закона сохранения механической энергии для консервативной системы  [c.375]

Наблюдая действительно происходящие движения, можно заметить, что полная механическая энергия не остается постоянной. С одной стороны, часть энергии движения уходит на преодоление всевозможных вредных сопротивлений, так что с течением времени полная энергия системы уменьшается с другой стороны, для поддержания движения или для его ускорения необходимо создать приток энергии, уходящей частично на компенсацию потерь энергии на преодоление вредных сопротивлений, частично на увеличение кинетической энергии системы. Ташм образом, никогда не приходится наблюдать движения в потенциальных силовых нолях, удовлетворяющие закону сохранения механической энергии в чистом виде, а всегда наблюдается наложение друг на друга нескольких сложных процессов, среди которых процесс движения в потенциальном поле играет более или менее значительную роль.  [c.233]

Это известны11 закон сохранения механической энергии для консервативных систем. Если задача статическая, то из выражения (9.25) легко установить, что полная энергия системы равна ее потенциальной энергии.  [c.197]

Пример 9.4. Используем закон сохранения механической энергии для определения наибольших напряжений в трехстержневой ферме (см. рис. 3.19) при внезапном приложении к ней в точке соединения стержней силы F (груз весом G = F мгновенно подвешивается к ферме). Потенциальная энергия механической системы определяется с точностью до постоянного слагаемого, и нулевой ее уровень можно выбрать в исходном ненагруженном состоянии. Таким образом, Е о = = 0. В этом положении начальная скорость груза равна нулю. Поэтому кинетическая энергия Бко= 0. Таким образом, в силу закона сохранения механической энергии для любого другого положения 1  [c.199]


Смотреть страницы где упоминается термин Закон сохранения механической энергии системы : [c.352]    [c.40]    [c.72]    [c.341]    [c.100]    [c.400]    [c.140]   
Смотреть главы в:

Курс теоретической механики  -> Закон сохранения механической энергии системы

Основные законы механики  -> Закон сохранения механической энергии системы


Курс теоретической механики Том2 Изд2 (1979) -- [ c.246 ]



ПОИСК



Закон механической энергии

Закон сохранения

Закон сохранения механической энергии

Закон сохранения механической энергии материальной точки и механической системы при движении в потенциальном силовом поле

Закон сохранения полной механической энергии материальной системы

Закон сохранения энергии

Механические системы механических систем

Система механическая

Сохранение

Сохранение механической энергии

Сохранение энергии

Теорема об изменении кииетн ческой энергии системы Закон сохранения полной механической энергии

Энергия механическая

Энергия системы



© 2025 Mash-xxl.info Реклама на сайте