Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сварочные Легирующие примеси

Технологические особенности электродуговой наплавки используют в целях ослабления нежелательных сопутствующих явлений, таких как окисление металла, поглощение азота, выгорание легирующих примесей и нагрев материала детали выше температуры фазовых превращений. Эти явления приводят к снижению прочности сварочного шва, нарушению термообработки материала, объемным, структурным и фазовым изменениям и короблению детали. Перемешивание материалов основы и покрытия ухудшает его свойства.  [c.275]


При электрошлаковой наплавке, когда расход флюса невелик, приемлемы методы легирования I и II. При этом используют кованые, катаные и литые электроды большого сечения. При механизированной наплавке открытой дугой легирование сварочной ванны осуществляют легированной или порошковой проволокой, подаваемой в дугу либо в качестве плавящегося электрода, либо присадки. Так, при плазменной наплавке в зависимости от примененного способа легирующие примеси вводят в токоведущую или присадочную проволоку (порошковую и легированную), в неподвижную присадку (проволоку, ленту, пасту, порошок, литые или металлокерамические присадки) и в порошок, вдуваемый в плазму.  [c.710]

Для предупреждения возникновения горячих трещин в сварных швах рекомендуется вводить в сварочные материалы (электроды, проволоку) легирующие элементы Si, А1, Мо, Мп и другие способствующие измельчению зерна, и снижать содержание вредных примесей.  [c.233]

Формирование сварного соединения при сварке плавлением сопровождается сложными диффузионными процессами в жидкой и твердой фазах, которые приводят к изменению химического состава в различных зонах, выделению или перераспределению примесей и легирующих элементов. При рассмотрении явления концентрационного переохлаждения уже указывалось на то, что состав кристаллизующейся твердой фазы будет отличен от состава исходного расплава. Вследствие этого по мере увеличения количества затвердевшего металла состав остающегося расплава, так же как и состав образующейся твердой фазы, будет постоянно изменяться. Поэтому при неизменности общего количества примесей в кристаллизующемся объеме сварочной ванны содержание их в различных участках шва неодинаково, что может приводить как к изменению прочностных характеристик, так и к снижению показателей свариваемости.  [c.455]

Перераспределение легирующих элементов и примесей в сталях при высокотемпературном сварочном нагреве — сложный диффузионный процесс, который может приводить как к снижению, так и повышению МХН. После завершения аустенитизации внутри зерен аустенита существует неравномерное распределение легирующих элементов и примесей, особенно углерода и карбидообразующих. Углерод концентрируется в местах, где ранее располагались частицы цементита, а также на участках зерна, где находятся еще не полностью растворившиеся специальные карбиды. Для сталей обыкновенного качества и качественных после горячей обработки давлением (прокатки, ковки) характерна начальная химическая неоднородность, связанная с волокнистой макроструктурой и полосчатой микроструктурой. Волокнистая макроструктура образована строчками раздробленных и вытянутых вдоль направления деформации неметаллических включений (сульфидов, оксидов, фосфидов). В зоне строчек имеет место повышенное содержание S, Мп, О2, Si, Р, А1. Полосчатая микроструктура вызвана более высокой концентрацией углерода в осях  [c.514]


Следует иметь в виду, что по приведенным выше выражениям можно лишь ориентировочно определять температурные и кинетические параметры процесса превращения аусте-нита. Это связано с тем, что они не учитывают особенностей конкретной плавки стали заданного марочного состава, а вместе с этим и степени завершенности высокотемпературных процессов в аустените при сварочном нагреве. В зависимости от качества шихты, способа выплавки, качества раскисления, содержания неконтролируемых примесей, а также исходного структурного состояния стали эти параметры могут заметно изменяться. Недостаточно полная гомогенизация при сварочном нагреве, особенно связанная с замедленным растворением карбидов, приводит к повышению Т . и Т .к и увеличению вследствие уменьшения содержания углерода и легирующих элементов в аустените. Включения оксидов, нитридов, сульфидов увеличивают 41, укрупнение аустенитного зерна приводит к ее снижению. Более надежно в настоящее время определение упомянутых выше параметров экспериментальным способом путем построения и обработки диаграмм АРА.  [c.527]

Для предупреждения возникновения горячих трещин в сварных швах рекомендуется снижать содержание вредных примесей и вводить в сварочные материалы (электроды, проволоку) легирующие элементы Si, А1, Мо, Мп и др., - способствующие измельчению кристаллитов в результате образования небольшого количества (до 5 %) ферритной фазы.  [c.277]

При сварке в инертных газах в сварочной ванне могут протекать металлургические процессы, связанные с наличием в ней растворенных газов и легирующих элементов, внесенных из основного или присадочного металла. При использовании смесей инертных газов с активными возникают металлургические взаимодействия между элементами, содержащимися в расплавленном металле, и активными примесями в инертном газе.  [c.312]

Как уже говорилось, жаропрочные стали и сплавы обладают особой чувствительностью к различным загрязнениям в виде серы, фосфора, легкоплавких примесей и газов. При шихтовке покрытий электродов для сварки аустенитных сталей и сплавов необходимо использовать лишь особо чистые материалы — металлические порошки, шлакообразующие компоненты и т. д. Экономически и технически выгоднее иметь так называемую прецизионную сварочную проволоку, т. е. проволоку из стали или сплава с точно заданными пределами содержаний легирующих элементов и вредных примесей, чем набор особо чистых компонентов на каждом электродном предприятии.  [c.62]

Расплавленный металл электрода переходит в сварочную ванну в виде небольших капель. Металл капель подвергается в дуговом промежутке воздействию шлака покрытия электрода и газов окружающей среды. При ручной сварке электродами, имеющими покрытие, одновременно с основным и электродным металлами плавится и нок/рытие, в результате чего образуется расплавленный неметаллический слой шлака. Назначение шлака— улучшать свойства расплавленного металла. Шлак защищает металл капли и сварочной ванны от воздействия окружающего воздуха, раскисляет и легирует металл сварочной ванны, в шлаке растворяются вредные примеси. В ряде случаев шлак способствует устойчивому горению дуги.  [c.15]

Для металлургических процессов при сварке характерны высокие температуры на отдельных участках дуги, кратковременность пребывания металла в жидком состоянии и быстрое изменение температурного режима. Расплавленный металл электрода или присадочной проволоки переходит в сварочную ванну в виде небольших капель, которые взаимодействуют с газовой фазой и жидким шлаком. Расплавленный слой шлака образуется при плавлении электродного покрытия и защищает металл капли и сварочной ванны от воздействия окружающего воздуха, раскисляет и легирует металл сварочной ванны, в шлаке растворяются вредные примеси. В процессе плавления электродного покрытия наряду с образованием слоя расплавленного шлака выделяются газы, возникающие при разложении газообразующих компонентов покрытия. Реакции между газообразными веществами и жидким металлом протекают быстрее, чем со ш лаком, поэтому действие газовой защиты более интенсивное. Расплавленный металл сварочной ванны взаимодействует также с окружающим ее основным металлом. Поэтому химический состав наплавленного металла может существенно отличаться от химического состава электродов или присадочной проволоки, а металл зоны термического влияния — от исходного состояния основного металла.  [c.18]


В сварных швах наблюдается ликвация, которая бывает зональной (неодинаковое распределение примесей по сечению шва) или внутри дендритной (неравномерное распределение примесей по сечению дендрита). Ликвация обусловлена присутствием в сварочной ванне легирующих элементов и примесей, обладающих ограниченной растворимостью в твердом растворе металла шва (например, в стальных швах на железной основе примесей серы, фосфора, углерода или таких легирующих элементов, как кремний, ниобий и др.).  [c.73]

Примеси азота при сварке некоторых металлов образуют нитриды, засоряющие сварочную ванну. В некоторых случаях азотизация металла приводит к уменьшению концентрации ад<тивных легирующих элементов в наплавленном металле.  [c.419]

Примеси кислорода вызывают окисление металла, обеднение его легирующими элементами, засорение сварочной ванны окислам.  [c.419]

Кристаллизация жидкого металла при охлаждении начинается с неполностью расплавленных зерен основного металла, расположенных на границе расплавления, к решетке которых и пристраиваются атомы кристаллизующейся фазы. После затвердевания металла шва на участках расплавления образуются зерна, состоящие частично из основного металла и металла шва. В сварочной ванне кроме жидкого металла имеются газы и шлаки, которые взаимодействуют между собой, в результате чего изменяется содержание примесей и легирующих добавок в металле шва.  [c.211]

Одним из наиболее широко применяемых технологических методов повышения стойкости шва против образования кристаллизационных трещин является уменьшение в нем содержания вредных и увеличение полезных элементов. Изменения химического состава металла шва в желаемом направлении обычно достигают применением дополнительного металла с низкой концентрацией вредных примесей и содержащего полезные легирующие элементы, уменьшением доли участия основного металла в металле шва, а также выбором типа покрытия или флюса, при металлургическом взаимодействии которых с металлом сварочной ванны происходит очищение его от вредных и легирование полезными элементами.  [c.234]

В связи с этим сварку следует производить плавящимся электродом того же состава, что и основной металл, или же неплавящимся электродом, ограничивать угар легирующих элементов и предупреждать загрязнение металла шва газами и вредными примесями, которые могут проникнуть в зону сварки из окружающей атмосферы или сварочных материалов. Металлургическое воздействие при сварке среднелегированных сталей должно заключаться главным образом в улучшении первичной структуры металла шва путем ускорения кристаллизации и модифицирования его присадкой малого количества таких элементов, как титан, алюминий и др., а также регулирования количества, формы и распределения неметаллических включений.  [c.549]

При наплавке плавящимся электродом по неподвижной легирующей присадке в виде порошка, пасты п т. п. количество присадки выбирают так, чтобы она вся переплавлялась дугой. Наплавку обычно производят под плавленым флюсом низкоуглеродистой проволокой. Благодаря энергичному перемешиванию металла в сварочной ванне примесь, введенная указанным путем, распределяется равномерно по сечению наплавленного слоя. При равномерном распределении примеси по длине наплавляемого валика можно получить наплавленный металл заданного состава.  [c.709]

Керамические флюсы позволяют вводить в них раскпслители, модификаторы и легирующие примеси. Эта возможность позволяет улучшить раскисление и кристаллизацию наплавленного. металла значительно сократить количество марок сварочной проволоки, получая заданный состав металла шва путем введения во флюс легирующих примесей кремния, молибдена, вольфрама, ванадия, титана, ниобия, а в некоторых случаях и хрома при недостатке его в сварочной проволоке  [c.499]

При наплавке, особенно многослойной, доля участия основного. металла невелика, поэтому переходом легирующей примеси из основного металла в первом приближении можно пренебречь. Если обозначить IMei,, концентрацию элемента в наплавленном металле (без разбавления его основным металлом), то коэффициент усвоения 1], элемента сварочной ванной (наплавленным металлом) можно представить в следующем виде  [c.432]

При сварке плавлением большое значение имеет введение в сварочную ванну легирующих примесей для получения шва требуемой композиции и свойств. В большинстве случаев, даже при использовании иассивных (инертных) защитны сред, приходится считаться с некоторым окислением металла в зоне сварки, связа1Н1ым с несовершенством защиты сварочной ванны от атмосферного влияния. Кроме того, многие флюсы для сварки сталей, а также электродные покрытия, как уже указывалось выше, обладают окислительным действием.  [c.130]

Одним из элементов специальной технологии наплавочных работ является предварительный подогрев детали, температура которого зависит от количества углерода и легирующих примесей в стали. Особенно велика опасность трещинообразования для углеродистых и легированных сталей, когда наплавка производится при низких температурах окружающего воздуха (на морозе), при ветре и сквозняках. Для некоторых деталей применяется термическая обработка после наплавки для улучшения стуркутуры и механических свойств металла, а также для снятия внутренних сварочных напряжений.  [c.69]

Допускается применение ручной, автоматической, полуавтоматической сварки под слоем флюса и в среде защитных газов с применением для основного слоя сварочных материалов, обеспечивающих механические свойства, близкие к свойствам основного металла. Для автоматической и полуавтоматической сварки облицовочного слоя нужно применять сварочную проволоку, а для ручной сварки — электроды, содержащие относительно большее количество легирующих примесей (Сг, N1), чтобы, получить в наплавленном металле сталь 1Х18Н9Т.  [c.79]


В данной работе рассматривается связь поверхностных явлений с процессом образования, укрупнения и удаления неметаллических включений из сварочной ванны с процессом перераспределения газов (N2, Н ) между расплавленным металлом и окружающей газовой средой с процессами О кисления легирующих примесей и порообразования с процессами кристаллизации метал-  [c.3]

Сварочное пламя должно иметь восстановительный характер, так как при окислительном пламени увеличивается выгорание легирующих примесей бронзового сплава олова, кремния, алюминия. Образующиеся окислы затрудняют сварку, а шов получается пористым с включениями шлаков. Чтобы не перегревать металл, пламя держится на несколько большем расстоянии от сварочной ванны, аналогично тому, как этоделается при сварке латуни. В качестве присадочного материала применяют прутки, близкие по составу к свариваемому металлу. В качестве раскислителя в присадочную проволоку вводят до 0,4% кремния. Мощность пламени устанавливается из расчета 100—150 л/час ацетилена на 1 мм толщины основного металла.  [c.375]

Проволока маркируется индексом Св (сварочная), буквами и цифрами. Обозначения легирующих примесей следующие Г — марганец, С — кремний, X — хром, Н — никель, М — молибден, В — вольфрам, Ф — ванадий и др. Первые две цифры указывают содержание углерода в сотых долях процента, а цифры после буквы, указывающей легирующие примеси, — количество данного элемента в процентах. Отсутствие цифры после буквенного обозначения легирующего элемента означает, что этого элемента в материале проволоки менее одного процента. Буква А в конце марки указывает на пониженное содержание вредных примесей (серы и фосфора). Например, сварочная проволока марки СВ-08ХГ2С содержит 0,08% углерода, до 1% хрома, до 2% марганца и до 1% кремния.  [c.112]

Важным преимуществом неплавленых керамических флюсов является их относительно малая чувствительность к ржавчине, окалине и влаге на поверхности свариваемых кромок деталей по сравнению с плавлеными флюсами. Это особенно важно при строительно-монтажных работах. Плавленые флюсы при сварке дают относительно небольшое количество легирующих примесей (только за счет восстановления из оксидов кремния и марганца). При этом появляются оксиды, способствующие образованию неметаллических включений, ухудшающих механические свойства металла. Поэтому для соответствующего легирования металла шва приходится применять дорогую легированную проволоку. Однако высокие технологические свойства плавленых флюсов (хорошая защита зоны сварки, хорошее формирование валиков, отделимость шлака и др.) и меньшая стоимость обеспечивают широкое применение их в сварочном производстве. При необходимости получения сварных швов вьгсокого качества по ударной вязкости при низкой температуре швов, стойких против образования пор и тре-  [c.202]

В зависимости от разновидности способа сварки в защитных газах подготовка кромок должна быть различной. Так как ири сварке в защитных инертных газах расплавленный металл изолирован от атмосферного воздуха, то в сварочной ванне могут протекать металлургические процессы, связанные с наличием в нем растворенных газов и легирующих элементов, внесенных из основного или д,ополнителъного металла. При использовании смесей инертпых с активными газами возникают металлургические взаимодействия между элементами, содержащимися в расплавленном металле, н активными примесями в инертном газе.  [c.254]

На участке полной перекристаллизации (рис. 13.17,/б) в металле проходят процессы аустенитизации, роста зерна и перераспределения легирующих элементов и примесей. Аустенитиза-ция — переход Fe,. Fe . Этот переход для доэвтектоидных сталей происходит в интервале температур, причем в условиях неравновесного сварочного нагрева с большими скоростями он начинается и заканчивается при температурах более высоких, чем равновесные Ad и При нагреве до температур начала аустенитизации сталь получает структуру феррито-перлито-карбидной смеси. Переход в аустенитное состояние представляет собой фазовое превращение диффузионного типа. Превращение начинается на участках перлита. Зародыши аустенита образуются на межфазных поверхностях феррит—цементит. Поскольку на каждом участке перлита возникает несколько зародышей аустенита, превращение Fea-> Fe приводит к измельчению зерна. При росте зародышей зерен аустенита вместе с перестройкой ОЦК решетки в ГЦК решетку возникает новая кристаллографическая ориентация последней. В результате исчезают границы бывших аусте-нитных зерен и образуются новые границы при стыковке растущих зерен. После завершения этого процесса образуются так называемые начальные зерна аустенита. Чем дисперснее исходная структура стали, т. е. чем больше межфазная поверхность, на которой образуются зародыши зерен аустенита, тем меньше размер начального аустенитного зерна.  [c.512]

Полученные результаты показывают, что применяемая в ряде случаев термическая обработка для снятия остаточных сварочных напряжений, связанная с нагревом конструкций до 600—700°С на воздухе и медленным охлаждением, может привести к резкому охрупчиванию ряда сплавов при эксплуатации в агрессивных средах. Чем более легирована а-фаза алюминием, примесями внедрения, цирконием, оловом и другими элементами, тем более интенсивно она распадается при медленном охлаждении и тем большее влияние оказывает газонасыщенный слой на характеристики работоспособности металла при эксплуатации в агрес-рвных средах.  [c.136]

В известной мере особую группу технологических материалов составляют разнообразные по природе и свойствам материалы, используемые в качестве защитных, легирующих и шлакообразующих (флюсующих) в сварочной технике и технике гайки. Основным назначением этих материалов является 1) защита расплавленного металла от соприкосновения с атмосферным воздухом, предотвращение окисления и насыщения металла газами 2) введение в состав металла сварочной ваниы различных добавок (легирующих элементов) 3) удаление в виде шлака вредных примесей (серы, фосфора) из расплавленного металла 4) улучшение смачивания припоем соединяемых пайкой поверхностей.  [c.98]

При сварке углеродистых сталей уменьшения склонности к образованию горячих трещин добиваются снижением содержания углерода в наплавленном металле вследствие применения сварочной проволоки с меньшим содержанием углерода по сравнению с основным металлом. Одновременно шов легируют марганцем и кремнием, которые обеспечивают сохранение необходимых механических свойств металла шва. Кроме того, присутствие марганца связывает серу в соединение MnS, в котором сера находится в виде твердого раствора. Температура плавления такого раствора выше 1180°С, поэтому в шве снижается количество легкоплавких примесей, способствующих образованию горячих трещин. Для сварки углеродистых сталей можно рекомендовать ручную дуговую сварку покрытыми электродами, сварку са-мозащитной порошковой проволокой, под флюсом, сварку в атмосфере защитных газов (аргона, аргона с добавлением кислорода или углекислого газа), электрошлаковую, газовую или контактную сварку.  [c.508]

Алюминий относится к числу весьма легко окисляющихся примесей жаропрочных и жаростойких аустенитных сталей и сплавов. При сварке открытой дугой и при сварке в углекислом газе или в газовых смесях с его участием не удается обеспечить приемлемое усвоение алюминия сварочной ванной. Здесь наиболее подходящими являются либо фторидные флюсы системы aFa— AlaOg (например, АНФ-6), либо неокислительные флюсы системы СаО—AI2O3. Алюминий, окисляясь, образует окисные пленки, очень прочно сцепляющиеся с поверхностью шва. В состав электродных покрытий иногда вводят порошок алюминия для предотвращения окисления других легирующих элементов, например, титана.  [c.78]


При дуговой сварке никеля и его сплавов пет необходимости всегда стремиться к получению металла пша, обладаюгцего таким же химическим составом и структурой, как свариваемый материал. Например, технически чистый никель не удается сварить без пор, трещип, с достаточно высокими показателями механических и коррозионных свойств шва, если его химический состав и структура будут индептичными основному металлу. Для получения сварных швов, удовлетворяющих разнообразным требованиям, часто приходится прибегать к комплексному легированию их элементами, не содержащимися в основном металле, и одновременно препятствовать обогащению шва вредными примесями. В зависимости от метода сварки никеля могут быть применены различные способы легирования металла шва. Наиболее надежно легирование электродной проволокой определенного состава в сочегашш с пассивным нелегирующим электродным покрытием, флюсом плп защитой инертным газом. При этом должны быть обеспечены условия, обеспечивающие полное усвоение сварочной ванной легирующих элементов, содержащихся в основном и присадочном металлах. Во время ручной сварки легирование шва может осуществляться через электродное покрытие, в состав которого вводятся соответствующие порошки металлов пли ферросплавов. При сварке под обычными плавлеными флюсами легирование металла шва является следствием физико-химических процессов между окислами флюса и никелем.  [c.181]

Примеси кислорода вызывают окисление металла, обеднеппе его легирующими элементами, засорение сварочной вапны окислами.  [c.419]

Активность газов в атомарном состоянии резко повышается. Находящийся в газовой фазе молекулярный и атомарный кислород соединяется с металлом сварочной ванны. Одновременно происходит окисление примесей и легирующих элементов, содержащихся в металле. В первую очередь окисляются элементы, обладающие большим сродством к кислороду. Железо с кислородом образует три соединения оксид РеО, содержащий 22,7% О , оксид Рез04, содержащий 27,64% О2, и оксид РеаОз, содержащий 30,06% О2. Из всех трех оксидов растворимы в железе РеО и Рвз04. В твердом железе растворимость кислорода невелика. Если жидкий металл имеет элементы-раскислителн, которые имеют большее сродство к кислороду, чем металл сварочной ванны, то в этом случае концентрация кислорода в сварочной ванне может быть значительно уменьшена за счет элементов раскислителей.  [c.212]

В сталях вредными газами и примесями являются азот N2, водород На, кислород Оа, сера 5, фосфор Р и др. Рафинирование выполняют с помош,ью окислительно-восстано-вительных процессов. Легирование металла шва можно получить расплавлением присадочной проволоки либо введением в покрытие или флюс порошкообразных металлических добавок. При расплавлении сварочного флюса и электродного покрытия сердечника порошковой проволоки образуется шлак. В расплавленном состоянии металл и шлак предстваляют собой несмешивающиеся жидкости. Шлаки не растворяются в металлах (кроме некоторых элементов, их составляющих). Сварочные шлаки, которыми покрыт расплавленный металл, защищают его от вредного воздействия воздуха, предохраняют расплавленные капли электродного металла от воздуха при их прохождении через дуговой промежуток. Кроме того, в результате химического взаимодействия между металлом и шлаком шлак раскисляет металл сварочной ванны, растворяет вредные примеси, легирует металл шва, накапливая теплоту, замедляет охлаждение металла шва, что способствует улучшению его качества. В зависимости от элементов, составляющих шлак, его химическое воздействие на жидкий металл может быть окисляющим или раскисляющим.  [c.213]

Производить дополнительное легирование шва примесями, устраняющими трещины. Например, при сварке хромокремне марганцовых сталей шов следует легировать молибденом, а прй сварке никелевых сталей — марганцем. Легирование может производиться выбором соответствующей марки сварочной проволоки, содержащей нужные компоненты, или через флюс.  [c.83]

Величина сварочного тока, применяемого при сварке медной проволокой, меньше, чем при сварке стальной, так как коэффициент плавления медной проволоки достаточно велик и составляет 20 г а-час, в то,время как для стали он в среднем равен 12 г1а-час. При сварке медных сплавов медная проволока не всегда обеспечивает равнопрочность сварного соединения. Например, при сварке латуни Л62 медной проволокой шов имеет пониженный предел прочности. Так, например, основной металл (латунь Л62) имеет предел прочности 30—40 кг/мм , а сварной шов, выполненный медной проволокой — 23,3 кг/мм . В этом случае для повышения прочности сварного шва следует применять электродную проволоку из медных сплавов и добиваться упрочнения металла шва за счет легирования его примесями. Применение для сварки латунной проволоки с высоким содержанием цинка (около 40%) не дало возможности получить нормально сформированный шов, потому что процесс сварки в этом случае сопровождается интенсивным выделением паров цинка и окиси цинка. Улучшить формирование шва в этом случае можно, применяя проволоку с меньшим содержанием цинка. Однако такая проволока дорога и к тому же не обеспечивает получения нужной прочности сварного шва. Более целесообразно применять безоловянную бронзовую проволоку, так как в этом случае легирующие элементы почти полностью переходят в шов. Например, можно использовать проволоку из бронзы Бр. КМц 3—1 содержащей 3% кремния и 1% марганца, остальное — медь. Шов, заваренный такой проволокой, получается плотным и имеет предел прочности до 31 кг1мм .  [c.94]


Смотреть страницы где упоминается термин Сварочные Легирующие примеси : [c.229]    [c.499]    [c.141]    [c.79]    [c.49]    [c.19]    [c.6]    [c.34]    [c.104]    [c.114]    [c.368]    [c.31]   
Машиностроение Энциклопедический справочник Раздел 3 Том 5 (1947) -- [ c.327 ]



ПОИСК



Легирующие примеси

Прима

Примеси



© 2025 Mash-xxl.info Реклама на сайте