Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Защитные латуни

Латуни (сплавы Си-)- Zn), в которых количество Zn не превышает 14%, при окислении образуют окислы, содержащие Си и Zn в соотношениях, соответствующих составу сплава, а латуни с количеством Zn > 20% образуют окислы, состоящие практически из ZnO и обладающие лучшими защитными свойствами сплавы, содержащие 20—40% Zn, окисляются в восемь раз медленнее меди почти независимо от содержания 2п. Таким образом, для этих сплавов 14-f-20% Zn.  [c.95]

Это уравнение рассматривается его автором как необходимое, но недостаточное условие для образования защитного окисла металла Me на основном металле. Для случая окисления латуней (сплавов Си + Zn), когда нужно учесть зависимость коэффициента диффузии Ад от концентрации каждого элемента в сплавах Си + Zn, Вагнер видоизменил уравнение (235) следующим образом  [c.114]


Олово применяется в основном как легирующий компонент и как защитное покрытие на стальных, медных и латунных изделиях. Оно проявляет высокую коррозионную стойкость в воздухе, природных водах и в средах пищевой промышленности (малая токсичность продуктов коррозии). Под дейст-  [c.19]

Кислые растворы (pH 4 0—6 5) применяют при нанесении покрытий на детали из черных и некоторых цветных металлов (медь латунь и др ) особенно когда их рабочие поверхности должны иметь высокие твердость износостойкость и коррозионно защитные свойства  [c.21]

Для надежной работы станции катодной защиты необходимо предохранить защитные установки от механических повреждений и от атмосферных воздействий. Это лучше всего достигается при их размещении в пластмассовом шкафу, стойком в атмосферных условиях. Необходимо предусмотреть достаточную вентиляцию шкафа для отвода тепла. Для защиты от насекомых целесообразно закрывать вентиляционные отверстия латунной сеткой. Защитные установки должны быть подключены к электрической сети, находящейся всегда под напряжением. Это особенно важно учитывать в тех случаях, когда защитные установки размещают в зданиях, электроэнергия в которых выключается на ночь, например на бензозаправочных станциях, не работающих ночью.  [c.216]

Латуни имеют однофазную или двухфазную структуру. Однофазные латуни содержат а-латунь и при содержании меди свыше 67% имеют высокую коррозионную стойкость. Если латунь содержит менее 62% меди, образуется двухфазная структура, т. е. а-латунь+ р-латунь. Бета-фаза менее коррозионно-устойчива и в большинстве случаев снижает защитные свойства латуни.  [c.36]

Добавка олова повышает стойкость латуни к морской воде, добавка марганца — к воде и пару, алюминий способствует улучшению защитных свойств при воздействии горячей воды и пара. Добавки мышьяка и сурьмы снижают склонность латуни к избирательной коррозии, т. е. к преимущественному растворению цинка из твердого раствора. Коррозионные трещины в однофазных и двухфазных латунях образуются при одновременном воздействии механических напряжений и некоторых компонентов внешней среды.  [c.36]

Электроосаждение медных сплавов возможно при использовании сложных щелочных цианистых растворов в температурных пределах 30—90° С (в зависимости от используемого раствора). Латунные и бронзовые изделия могут получать покрытие при использовании анодов соответствующего состава сплавов, причем катодная производительность и состав электролитических осадков зависят от плотности тока, применяемого в процессе осаждения. Большинство осадков обладает довольно хорошим блеском, но выравнивание в основном плохое или отсутствует. Для декоративного использования стали применяют обычно тонкослойные осадки, без грунта или в сочетании с никелем в целях улучшения выравнивания. При этом обычно наносят лак, чтобы избежать потускнения под влиянием атмосферных воздействий. В некоторых случаях можно использовать декоративное хромовое покрытие, но осадки сплавов меди часто имеют высокие внутренние напряжения, что может привести к серьезному растрескиванию хрома. Электролитические осадки бронзы могут служить в качестве защитных грунтовых покры-  [c.95]


При выборе защитного покрытия конструктору необходимо учитывать и его декоративные качества цвет, яркость, внешний вид. При существующей технологии можно получить различные цвета от светло-голубого хромового до желтого латунного или золотистого и красного бронзового покрытия. Хороший блеск дают покрытия медью, цинком, кадмием, никелем, серебром, зо-  [c.78]

Эмаль МС-278 на масляно-стирольной основе, черная матовая. Предназначается для однослойной защитно-декоративной окраски деталей оптических приборов, изготовленных из различных металлов (латунь, сталь, алюминий).  [c.87]

Ингибитор МСДА защищает от атмосферной коррозии сталь, чугун, алюминий, медь, бронзу и латунь. Пассивацию проводят 0,2—1%-ным раствором ингибитора без подогрева. Для улучшения контакта пассивирующего раствора с металлом котла рекомендуется прокачивание раствора в течение 1—2 ч по замкнутому контуру. Раствор ингибитора стоек при длительном хранении и может быть многократно использован (после освобождения от взвесей на механическом фильтре). Срок защитного действия ингибитора в зависимости от внешних условий от 2 до 5 лет.  [c.189]

Изучение причин разрушения труб из медных сплавов показывает, что для предупреждения их коррозии необходимо строгое выполнение требований по контролю за качеством поступающих на ТЭС трубок и их хранению поддержание в условиях эксплуатации достаточной чистоты поверхности трубок с водяной стороны отказ от применения способов чистки трубок с водяной стороны, способствующих разрушению защитных пленок (резкие тепло-смены для высушивания и отслаивания органических отложений, химические чистки без ингибиторов). При остановке конденсаторов на длительный срок трубки должны быть промыты чистой пресной водой. Трубки для блочных и атомных электростанций должны подвергаться полному, 100 %-ному дефектоскопическому контролю. Перед монтажом латунных трубок необходимо проводить контроль на отсутствие остаточных внутренних напряжений.  [c.202]

Выбор металлических покрытий сурьмой, висмутом, кобальтом и латунью находится в полном соответствии с классификацией металлов и сплавов по их износостойкости. Эти металлы относятся к группе металлов, которые не склонны к схватыванию и имеют в широком диапазоне условий трения склонность к образованию устойчивых прочных защитных пленок окислов, хорошо сопротивляющихся износу.  [c.125]

Для повышения качества поверхности после травления существенную роль играет среда, в которой производится предварительный отжиг латуней. Так, например, при отжиге латунной ленты в защитной среде, состоящей из 90% азота и 10% водорода, время травления сократилось в 2—3 раза при значительном улучшении качества поверхности. Это можно объяснить, в частности, тем, что окисная пленка, образующаяся при отжиге в защитной среде, гораздо тоньше, чем на открытом воздухе.  [c.91]

Поверхность готовых отливок может быть улучшена полированием и галтовкой. Обработка резанием применяется редко, так как она ухудшает вид поверхности. Для защиты от коррозии на литые изделия наносят защитные покрытия. Их можно окрашивать, эмалировать, электролитически покрывать медью, латунью, хромом или никелем, а также покрывать пластмассой. Наилучшими защитными свойствами обладают двух- и трехслойные электролитические покрытия медью, никелем и хромом. Длительность срока службы покрытий зависит от их толщины и метода нанесения.  [c.272]

Латунь может подвергаться также ударной коррозии, связанной с явлением кавитации i. Водовоздушные полости, возникающие при этом, устраняются, как только они переносятся в районы более повышенного давления. Разрушение этих полостей сопровождается внезапными сжимающими усилиями большой величины. Если место разрушения этих полостей близко к стенкам конденсаторных трубок, то трубки подвергаются большому числу ударов и пленки на них разрушаются. При этом на поверхности металла, лишенной защитных пленок, возникает анодный участок, катодом же служит значительная по своей величине поверхность металла с неразрушенной пленкой, которая окружает анодные участки. При этом создаются условия для протекания локальной коррозии, интенсивность которой определяется не только концентрацией коррозионных агентов, но и соотношением площадей действующей макропары.  [c.68]


Медные накипи в котлах образуются при наличии в питательной воде продуктов коррозии латунных труб различных теплообменников и являются следствием электрохимического процесса восстановления меди в условиях разрушения защитной оксидной пленки.  [c.108]

Величина коррозионных поражений в табл. 3 показана для черных металлов в виде доли поверхности, пораженной коррозией, а для цветных металлов в виде баллов условной шкалы, в которой балл о отвечает неизменяемости внешнего вида образцов, а третий балл — отдельным точечным поверхностным поражениям. Сопоставление защитного действия МСДА-18 и МСДА-11 показывает, что по отношению к цветным металлам МСДА-18 несколько превосходит МСДА-11. Так после испытаний равной длительности (около 660 циклов) латунь под защитой МСДА-11 имеет 3 балла, а МСДА-18 — 2, свинцовистая бронза — соответственно 2 и 0. МСДА-18 эффективно защищает и черные и цветные металлы в паре сталь со свинцовистой бронзой, бронза — с баббитом и др.  [c.95]

Вспомогательные приспособления. Каждый масспектрометр калибровался посредством стандартной натечки, которая давала постоянную и воспроизводимую скорость натекаемых газов. Простым и в то же время вполне удовлетворительным устройством явилась расплющенная медная трубочка диаметром 3 км, заключенная в защитную латунную гильзу диаметром 9 мм. За единицу натечки бы.яо выбрано увеличение давления на 1 микрон, в объеме 1куб. фут (0,028 м ) за 1 час (сокращено ш Ь). Наиболее употребительные значения натечки лежали в пределах 0—100 таких единиц изредка требовались несколько большие величины. Ниже приводится таблица перевода единиц тГн в другие бчлее обычные единицы.  [c.28]

При сварке плавящимся электродом в инертных газах используют обычные полуавтоматы для сварки в защитных газах и сварочную проволоку диаметром 1—2 м г сила сварочного тока 150— 200 А для проволоки диаметром 1 мм и 300—450 А для проволоки диаметром 2 мм напряжение дуги 22-26 В скорость сварки зависит от сечения шва. При сварке латуней, бронз и медно-никелевых сплавов наиболее широко используют вольфрамовый электрод, так как при сварке плавяш,имся электродом происходит более интенсивное испарение цинка, олова и др.  [c.347]

Основная трудность при сварке латуней --испарение цинка. В результате снижается прочность и коррозионная стойкость латунных HiBOB. Пары цинка ядовиты, поэтому необходима интенсивная вентиляция или сварщики должны работать в специальных масках. При сварке в защитных газах преимущественно применяют сварку неплавящимся вольфрамовым электродом, так как при этом происходит меньшее испарение цинка, чем при использовании плавящегося электрода. При газовой сварке лучшие результаты получают при применении газового флюса. Образующийся на поверхности сварочной ванны борный ангидрид (В2О3) связывает пары цинка в шлак. Сплошной слой шлака препятствует выходу паров цинка из сварочной ванны. Латунь обладает меньшей теплопроводностью, чем медь, поэтому для металла толщиной свыше 12 мм необходим подогрев до температуры 150 С.  [c.235]

Борьбу с этим очень опасным видом коррозии ведут а) применяя металлы, менее склонные к коррозионному растрескиванию (например, малоуглеродистую сталь, содержащую 0,2% С, с фер-рито-перлитной структурой) б) используя коррозионностойкое легирование (например, сталей хромом, молибденом) в) проводя отжиг деформированных металлов для снятия внутренних напряжений (например, отжиг деформированных латуней) г) создавая в поверхностном слое металла сжимающие напряжения (например, путем обдувки металла дробью или обкаткой роликом) д) тщательной (тонкой) обработкой поверхности для уменьшения на ней механических дефектов е) проводя обработку коррозионной среды (например, питательной воды котлов высокого давления) ж) вводя в электролит замедлители коррозии з) нанося защитные покрытия  [c.335]

Одним из методов борьбы с газовой коррозией меди и ее сплавов является легирование их магнием, алюминием, кремнием и др. Наиболее широко применяются при высоких температурах алюминиевые бронзы с содержанием алюминия до 10% и бернллневые бронзы (2,5% Ве). Эти бронзы жаростойки до 300° С. На латунях с содержанием цинка выше 20% образуется защитная пленка ZnO, которая при высоких температурах об-лада< т хорошими защитными свойствами.  [c.255]

На практике катодную защиту можно применять для предупреждения коррозии таких металлических материалов, как сталь, медь, свинец и латунь, в любой почве и почти всех водных средах. Можно предотвратить также питтинговую коррозию пассивных металлов, например нержавеющей стали и алюминия. Катодную защиту эффективно применяют для борьбы с коррозионным растрескиванием под напряжением (например, латуней, мягких и нержавеющих сталей, магния, алюминия), с коррозионной усталостью большинства металлов (но не просто усталостью), межкристаллитной коррозией (например, дуралюмина, нержавеющей стали 18-8) или обесцинкованием латуней. С ее помощью можно предупредить КРН высоконагруженных стрей, но не водородное растрескивание. Коррозия выше ватерлинии (например, водяных баков) катодной защитой не предотвращается, так как пропускаемый ток протекает только через поверхность металла, контактирующую с электролитом. Защитной плотности нельзя также достигнуть на электрически экранированных поверхностях, например на внутренней поверхности трубок водяных конденсаторов (если в трубки не введены вспомогательные аноды), даже если сам корпус конденсатора достаточно защищен.  [c.215]


Некоторые подшипники изготовляют со встроенными односторонними или двусторонними уплотнениями (с постоянным запасом пластичной смазки), с проточками на наружном кольце для установочной (фиксирующей) шайбы или с заменяющим последнюю упорным буртом. Чаще используют штампованные сепараторы, но иногда в подшипниках, преимущественно скоростных, применяют массивные сепараторы из латуни, бронзы, дюраля или трубочного текстолита. Существуют также самосмазывающие сепараторы из АСП-пластиков и наполненных фторопластов или поликарбонатов. Некоторые типы подшипников изготовляют с одним наружным или внутренним кольцом, а также без сепаратора. На рис. 1 представлены основные конструктивные разновидности стандартных шарикоподшипников 1 — радиальный однорядный (ГОСТ 8338—75) 2 — то же, со стопорной канавкой (ГОСТ 2893—73) 3 — то же, с защитными шайбами (ГОСТ 7242—70 ) — радиальный сферический (ГОСТ 5720—75) 5 — магнетный 6 — радиально-упорный (ГОСТ 831—75) с замком на наружном кольце 7—то же, с замком на внутреннем кольце 8 — трех- или четырехконтактный (ГОСТ 8995—75) 9 — упорный одинарный (ГОСТ 6874—54 ) 10 — то же, сферический, с подкладным кольцом II — то же, двойной (ГОСТ 7872—75). На рис. 2 показаны наиболее характерные типы роликоподшипников / — без бортов на наружном кольце (ГОСТ 8328— 75) 2 — без бортов на внутреннем кольце (ГОСТ 8328—75) S — с одним бортом на внутреннем кольце (ГОСТ 8328—75) 4 — закрытый, с плоской приставной шайбой (число их разновидностей больше десяти, не считая конструктивных модификаций сепараторов, ГОСТ 8328—75) 6 — конический роликоподшипник (ГОСТ 333—П) в двух- и четырехрядном исполнении (ГОСТ 6364—68 и 8419—75) 6 — радиальный сферический двухрядный роликоподшипник (ГОСТ 5721—75) с бочкообразными телами качения 7 — игольчатый подшипник (ГОСТ 4657—71) комплектный без сепаратора (может быть и с сепаратором) S — то же, СО штампованным наружным кольцом (ГОСТ 4060—60) 9 — упор-  [c.391]

Са(ОН) Fe, 2п, Си. латунь П одщелачивание или нейтрализация среды образование защитных плёнок  [c.28]

Цинк применяют для защитных покрытий, в качестве составной части латуней и как материал для электродов гальванических элементов. Кроме того, его используют в фотоэлементах и для металлизации бумаги в металлобумажных конденсаторах. Нанесение метшшического слоя на бумагу производят путем испарения цинка в вакууме при температуре порядка 600°С.  [c.34]

Цинк — светлый металл, получаемый металлургическими методами и очищаемый электролитически. Цинк марки ЦВ (высокоочн-щенный) содержит не менее 99,99 % Zn и не более 0,01 % примесей (РЬ, Fe, d, Си). При комнатной температуре цинк хрупок при нагреве до 100 °С он становится тягучим и пластичным, а при дальнейшем нагреве (свыше 200 Т) — снова хрупким. Цинк применяется в качестве защитных покрытий, составной части латуней, из него изготовляются электроды гальванических элементов. Кроме того, он пспользуется в фотоэлементах и для металлизации бумаги в малогабаритных металлобумажных конденсаторах. Нанесение металлического слоя на бумагу производят путем испарения цинка в вакууме при температуре 600 °С.  [c.218]

Потенциалы меди М4 и латуни Л62 во времени изменяются медленно, лищь через 75 ч наблюдается небольщой их сдвиг в отрицательную сторону (рис. III. 9). Потенциалы титановых сплавов до испытаний в тонкой пленке морской воды составляют примерно —0,1 —0,2 В. После испытаний в приморской атмосфере в течение 3 месяцев они за счет формирования защитной пленки, тормозящей анодный процесс, приобретают более  [c.51]

Устойчивость олова дает возможность широко использовать его в условиях не очень сильного коррозионного воздействия. Чаще всего оно находит применение в качестве защитных покрытий по стали, меди и латуни, контактирующих с питьевой водой, пищевыми продуктами, овощами, фруктами (консервные банки). Область применения олова ограничена его незначительной механической прочностью и низкой термоустойчивостью. Олово служит легирующим компонентом в ряде припоев и сплавов для заливки подшипников (подшипниковая композиция).  [c.142]

Марки медных сплавов, наиболее широко используемых в СССР, приведены в табл. 10.2. В зависимости от химического состава и скорости течения воды используют различные марки металла (табл. 10.2) [1]. Среди условий, характеризующих коррозионную агрессивность среды, первостепенное значение имеют содержание хлоридов и скорость циркуляции. Если применяется пресная вода (речная, озерная) с содержанием хлоридов до 20 мг/л и со-лесодержанием до 300 мг/л, то при соблюдении общепринятых защитных мер трубы из меди и латуни Л68 характеризуются  [c.192]

К таким факторам относятся образование защитной поверхностной пленки, концентрация в воде растворенного кислорода и ионов металлов, скорость и температура воды, а также биологическое обрастание. Наличие электрического контакта меди с другим металлом чаще всего отрицательным образом сказывается на коррозионном поведении второго элемента такой гальванической пары (скорость его коррозии возрастает). Независимо от гальванических эффектов, обычной формой коррозии латуней с высоким содержанием цинка является обесцинко-ванпе. Коррозионные факторы, перечисленные выше, часто взаимосвязаны и их относительная важность может зависеть от конкретных условий.  [c.97]

Калиненко [28] обнаружил колонии бактерий на алюминиевых,, латунных и бронзовых пластинках, погруженных в натуральную морскую воду, и высказал предположение, что эти колонии ускоряют электрохимические процессы коррозии металлов. Розенберг и Улановский [29] установили, что бактерии могут усиливать коррозию нержавеющей стали в морской воде, уменьшая защитные эффекты катодной поляризации, но могут и замедлять коррозию, способствуя образованию осадка СаСОз и Mg (ОН) 2 на поверхности стали.  [c.432]

Для контроля сварных стыков труб в монтажных условиях нами разработана специальная установка, чертеж которой представлен на рис. 4. Защитный кожух яйцевидной формы имеет наружную чугунную оболочку, залитую свинцом. В кожухе укреплена латунная трубка, в которой перемещается трос с припаянным к нему патроном с препаратом. На концах трубки вделаны штуцеры с накидными гайками для присоединения гиб  [c.326]

Медно-цинковые сплавы изготовляют в тигельных печах или в электрических индукционных печах типа Аякс. Достоинства индукционных печей минимальный угар и возможность постоянного, притом точного контроля температуры металла. Плавление латуни в электропечи типа Аякс устраняет надобность в защитных покровах. Пламенные печи из-за большого угара применять не  [c.193]

Коррозионная стойкость латуней также возрастает при присадке к ним алюминия (около 2%). Добавка алюминия опособствует восстановлению защитных пленок при механическом разрушении, благодаря чему эти латуни обладают большей устойчивостью в условиях коррозионной эрозии и кавитации.  [c.67]

Основным IB организации противокоррозионной защиты трубок конденсаторов турбин, изготовленных из латуни и других медных сплавов, является создание условий, при которых обеспечиваются сохранность защитных пленок и постоянное их возо бновление в случае разрушения. Разрушения могут возникать как по причине воздействия механических факторов (повышенных напряжений, деформаций, абразивного износа, кавитации и т. д.), так и химических (связанных с действием аммиака, сероводорода и других стимуляторов коррозии).  [c.71]


Приведенная характеристика щелочных свойств морфолина не дает оснований считать, что при дозировке его в размере 4,0 мг/кг обеспечивается более совершенное щелочение питательной воды на участках тракта, расположенных до деаэратора, по сравнению с применением аммиака. Основные преимущества морфолина перед аммиаком заключаются в том, что морфолин не в состоянии вызывать коррозию латунных трубок подогревателей и копденсаторов турбин и менее летуч. Последнее его свойство имеет двойное значение. Во-первых, оно обеспечивает создание требуемой по условиям сохранения защитных пленок на поверхности нагрева котла концентрации щелочи, равной 35 мг/кг, что предупреждает наводороживание металла во-вторых, оно обеспечивает нейтрализацию угольной кислоты при конденсации пара в регенеративных подогревателях и турбинах.  [c.267]


Смотреть страницы где упоминается термин Защитные латуни : [c.386]    [c.29]    [c.29]    [c.29]    [c.86]    [c.120]    [c.91]    [c.99]    [c.98]    [c.114]    [c.287]    [c.319]    [c.380]   
Машиностроение Энциклопедический справочник Раздел 3 Том 6 (1948) -- [ c.193 ]



ПОИСК



Защитные латуни кремниевой

Защитные латуни специальной

Защитные свойства латунных покрытий

ЛАТУН

Латунь

Латунь Сварка в среде защитных газо

Сварка латуни в среде защитных газов



© 2025 Mash-xxl.info Реклама на сайте