Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Паровые Давление

Изгибающий момент в сечении III—III от действия паровых усилий находим, считая, что равнодействующая сил парового давления на лопатку приложена на расстоянии /р от корневого сечения  [c.84]

Шлаковая вата. Изготовляется из горных пород тииа серпентина. Силикатный расплав получается в вагранке, имеющей два сопла, одно воздушное, другое паровое. Давление пара 8—10 ат, давление воздуха — 4 ат.  [c.354]

К внешним силам, например, относятся давление рабочей смеси (газа или жидкости) на поршень кривошипно-ползунного механизма двигателя внутреннего сгорания, парового двигателя, компрессора, вращающий момент, развиваемый электродвигателем на валу рабочего механизма, и др. Некоторые силы возникают в результате движения механизма. К этим силам, например, относятся силы трения при движении, силы сопротивления среды и т. д. Некоторые силы, как, например, динамические реакции в кинематических парах, возникают при движении вследствие инерции звеньев.  [c.204]


Это выражение очень часто используется в расчетах, так как огромное количество процессов подвода теплоты в теплоэнергетике (в паровых котлах, камерах сгорания газовых турбин и реактивных двигателей, теплообменных аппаратах), а также целый ряд процессов химической технологии и многих других осуществляется при постоянном давлении. Кстати, по этой причине в таблицах термодинамических свойств обычно приводятся значения энтальпии, а не внутренней энергии.  [c.18]

Насыщенным называется пар, находящийся в термическом и динамическом равновесии с жидкостью, из которой он образуется. Динамическое равновесие заключается в том, что количество молекул, вылетающих из воды в паровое пространство, равно количеству молекул, конденсирующихся на ее поверхности. В паровом пространстве при этом равновесном состоянии находится максимально возможное при данной температуре число молекул. При увеличении температуры количество молекул, обладающих энергией, достаточной для вылета в паровое пространство, увеличивается. Равновесие восстанавливается за счет возрастания давления пара, которое ведет к увеличению его плотности и, следовательно, количества молекул, в единицу времени конденсирующихся на поверхно-  [c.35]

Дросселирование является типичным неравновесным процессом, в результате которого энтропия рабочего тела возрастает без подвода теплоты. Как и всякий неравновесный процесс, дросселирование приводит к потере располагаемой работы. В этом легко убедиться на примере парового двигателя. Для получения с его помощью технической работы мы располагаем паром с параметрами pi и ti. Давление за двигателем равно рг (если пар выбрасывается в атмосферу, то р2 = 0,1 МПа).  [c.51]

Теплота в этом цикле подводится по линии 4-5-6 (см. рис. 6.6) в паровом котле ПК. пар поступает в турбину Т и расширяется там по линии 1-2 до давления ръ совершая техническую работу /тех-Она передается на электрический генератор ЭГ или другую машину, которую вращает турбина. Отработавший в турбине пар поступает в конденсатор К, где конденсируется по линии 2-3, отдавая теплоту конденсации холодному источнику (охлаждающей воде). Конденсат забирается насосом Н и подается снова в котел (линия 3-4 на рис. 6.6).  [c.62]

Устройство современного парового котла. Одна из схем котла с естественной циркуляцией приведена на рис. 18.2. Барабанный паровой котел состоит из топочной камеры и газоходов, барабана, поверхностей нагрева, находящихся под давлением рабочей среды (воды, пароводяной смеси, пара), воздухоподогревателя, соединительных трубопроводов и воздуховодов.  [c.148]


Каждый паровой котел должен иметь также защитные устройства — предохранительные клапаны, устанавливаемые на барабане котла и выходном коллекторе пароперегревателя. Эти клапаны предохраняют барабан котла и поверхности нагрева от недопустимого повышения давления, выпуская пар при достижении определенного давления в барабане. Кроме того, камерные топки для сжигания твердого пылевидного топлива оборудуются газовыми предохранительными (взрывными) клапанами, которые дают выход продуктам сгорания при взрыве пыли для предотвращения разрушения обмуровки, трубной системы и каркаса.  [c.163]

Эксплуатация паровых и водогрейных котлов, сосудов, работающих под давлением, и трубопроводов пара и горячей воды связана с повышенной опасностью. Их взрывы вызывают большие разрушения, травмы и наносят большой материальный ущерб. Для предупреждения подобных аварий организован государственный надзор, порученный правительством СССР Комитету по надзору за безопасным ведением работ в промышленности и горному надзору (Госгортехнадзор СССР). Госгортехнадзор СССР утверждает правила устройства и безопасной эксплуатации котлов, сосудов, работающих под давлением, и трубопроводов пара и горячей воды, обязательные  [c.163]

Коэффициент полезного действия современных ТЭС с паровыми турбинами достигает 40 %, с газовыми турбинами — не превышает 34 %. На ТЭС с паротурбинным приводом возможно использование любого вида топлива газотурбинные станции пока используют только жидкое и газообразное. Однако паровая турбина не столь маневренна, как газовая. Дело в том, что давление пара, подаваемого в турбину, высокое — до 23,5 МПа и корпус турбины для обеспечения прочности очень массивен. Это не позволяет быстро и равномерно прогреть паровую турбину при пуске. Газовые турбины работают при давлениях рабочего тела не более 1 МПа, их корпус много тоньше, прогрев осуш,ествляется быстрее. Поэтому газотурбинные агрегаты на ТЭС рассматриваются в перспективе как пиковые — для обеспечения выработки электроэнергии при кратковременном увеличении в ее потребности — для снятия пиков электрической нагрузки.  [c.185]

Под маневренностью понимается способность ТЭС (котлов, турбоустановок) быстро набирать нагрузку, быстро увеличивать выработку электроэнергии, что бывает необходимо в моменты наибольшего (пикового) потребления энергии предприятиями и населением. При этом котел и турбину часто приходится пускать из холодного состояния. Ввод турбины в работу и набор нагрузки возможны только после прогрева ее до температуры пара. Быстро обеспечить равномерный прогрев массивных фасонных элементов паровой турбины, работающей под высоким давлением пара, невозможно, т. е. невозможен и быстрый пуск мощной паровой турбины из холодного состояния.  [c.218]

Равномерный, без короблений и разрывов, прогрев всех элементов конструкции парового котла, особенно кирпичной обмуровки, если она есть, и сильно удлиняющихся при нагреве экранных труб, связанных между собой жесткими трубами большого диаметра — коллекторами, также невозможно осуществить быстро. Тонкостенная камера сгорания газовой турбины, работающая при низком давлении, прогревается намного быстрее котла.  [c.218]

Ркс. 1.10. Принципиальная тепловая схема ПГУ-1100 с ВПГ-2650 с сжиганием твердого топлива в псевдоожиженном слое /—сушилка i —циклоны 3—высоконапорный парогенератор с псевдоожиженным слоем 4—циркуляционный насос 5—паровая турбина мощностью 800 МВт 5—конденсатор 7—конденсаторный насос 8—подогреватель низкого давления 9—питательный насос 10—деаэратор И— экономайзер 12—газовая турбина 13—компрессор 14—паровая турбина с противодавлением для привода дожимающего компрессора 15—дожимающий компрессор  [c.22]

Питательная вода из деаэратора с температурой 168 °С питательным насосом подается в экономайзер, где нагревается до 300 °С, и далее в парогенератор. Перегретый пар с давлением 13 МПа и температурой 515 °С из котла направляется в ЦВД паровой турбины, затем во  [c.23]


Скрытая теплота фазового превращения сообщается при условиях постоянства давления и может быть вычислена как изменение энтальпии. Для большого числа веществ изменение энтальпии фазового превращения может быть определено эмпирически при температуре превращения и атмосферном давлении. Так как жидкости и твердые тела почти несжимаемы, на скрытую теплоту и температуру плавления давление влияет очень мало. Однако паровая фаза может подвергаться сильному сжатию, и на скрытую теплоту и температуру испарения давление влияет весьма существенно.  [c.60]

Скрытая теплота парообразования для температур и давлений, отличающихся от нормальной точки кипения и 1 атм, может быть установлена методом, разработанным в примере 5. В этом примере принято, что паровая фаза ведет себя как идеальный газ. так что метод пригоден только для давления ниже 2 атм. Существуют также полуэмпирические методы оценки скрытой теплоты испарения.  [c.60]

Хотя уравнение (8-69) применимо даже тогда, когда система находится в жидкой фазе при конечном давлении, фугитивность чистого жидкого компонента удобнее вычислить с учетом того, что при температуре и давлении, соответствующих фазовому равновесию системы, фугитивность жидкой фазы равна фугитивности паровой фазы. Следовательно, фугитивность жидкости в точке кипения может быть определена вычислением фугитивности пара при тех же температуре и давлении.  [c.247]

Уравнение (9-6) — частный вид знаменитого уравнения Клаузиуса — Клапейрона, которое обычно используют для определения скрытой теплоты испарения по величине наклона кривой для давления пара. При условии, что паровая фаза — идеальный газ,  [c.265]

В этом выражении сумма состояний паровой фазы и сумма состояний твердой фазы должны быть отнесены к одному и тому же основному энергетическому уровню. Если давление системы мало для того, чтобы пар можно было рассматривать как идеальный газ,то  [c.266]

Рис. 55. Зависимость фугитивности парообразного и жидкого гептана при 400 °К Ван-дер-Ваальса от давления /—паровая фаза 2—жидкая фаза (верхние кривые вычислены по уравнению Ван-дер-Ваальса. нижние— по уравнению Венедикт — Вебб — Рубина) Рис. 55. Зависимость фугитивности парообразного и жидкого гептана при 400 °К Ван-дер-Ваальса от давления /—<a href="/info/415570">паровая фаза</a> 2—<a href="/info/236464">жидкая фаза</a> (верхние кривые вычислены по уравнению Ван-дер-Ваальса. нижние— по уравнению Венедикт — Вебб — Рубина)
Было немало попыток представить коэффициент распределения как функцию температуры, давления и состава. Однако так как интеграл уравнения (9-39) — функция вида и количества каждого компонента в системе, то нельзя вывести общее строгое соотношение для коэффициента распределения. Более того, чтобы вычислить интеграл в уравнении (9-39), необходимо знать величины ik при постоянных составе и температуре по всей области давлений от нуля до давления системы. В области давления между давлением системы и давлением п и кипении, соответствующем температуре и фазовому составу, v представляет собой парциальный мольный объем компонента в гомогенной жидкой фазе. В области давления между нулем и началом конденсации vt представляет собой парциальный мольный объем компонента в гомогенной паровой фазе того же состава. В двухфазной области между давлением начала конденсации и давлением при кипении величины не могут существовать, и уравнение (9-39) не может быть использовано для определения коэффициента распределения.  [c.274]

При идеальном растворе задача определения условий фазового равновесия может быть сведена к двум отдельным и независимым стадиям. Первая стадия — коэффициент распределения для каждого компонента определяют при данных температуре и давлении исходя из фугитивностей жидкой и твердой фаз чистого компонента. Вторая стадия — по данным значениям коэффициента распределения для каждого компонента определяют фазовые составы, применяя уравнение (9-38) к каждому компоненту с учетом того, что EXj- = 1 для жидкой фазы и = 1 для паровой фазы.  [c.278]

Для того чтобы две фазы существовали одновременно в двухкомпонентной системе, коэффициент распределения одного компонента должен быть больше единицы, а коэффициент другого компонента меньше единицы. Если коэффициенты распределения обоих компонентов больше единицы при данных температуре и давлении, то существует только паровая гомогенная фаза если  [c.278]

Пример 2. Определить равновесный состав жидкой и паровой фаз для смеси этана и гептана при 400 °К и 20 атм, допуская, что каждая фаза — идеальный раствор. Использовать диаграмму обобщенного фактора сжимаемости для вычисления фуги-тивностей чистых компонентов. Принять, что фугитивность компонента в жидкой фазе не зависит от давления.  [c.279]

Если давление системы настолько низко, что паровую фазу можно считать смесью идеальных газов, определение условий равновесия может быть в дальнейшем упрощено. В идеальной газовой системе фугитивность чистого компонента равна общему давлению. Так как смесь идеальных газов также образует идеальный раствор, фугитивность компонента в смеси равна произведению общего давления на мольную долю, или парциальному давлению. Это составляет содержание закона Дальтона  [c.282]

Кроме того, фугитивность чистой жидкости, находящейся под давлением ее пара, равна давлению пара, когда паровая фаза является идеальным газом. Если не учитывать влияние давления на фугитивность жидкости, то фугитивность компонента в идеальном жидкофазном растворе  [c.282]


Пример 3. Определить состав жидкой и паровой фаз для смеси этана и гептана при 400 °К и 20 атм, считая, что паровая фаза является идеальным газом, а жидкая фаза — идеальным раствором. Гипотетическое давление этана при 400 °К было установлено в примере 2 и равно 191 атм, а давление пара гептана при 400 °К составило 2,19 атм.  [c.282]

Котлы паровые давлением до 13 апгм, работающие в год не больше 000 час 3 12 24  [c.263]

П а н и и а Е. Ф., Использование изотерм парового давления при изучении процесса прессования бурых углей. Сборник Hajy Hbie труды Московского горного ниститута , № 27, 1959.  [c.173]

Развитие конструкций котлов. Исто рическн развитие паровых котлов шло в направлении повышения паропроизво-дительности, параметров производимого пара (давления и температуры), надежности и безопасности в эксплуатации, увеличения экономичности (КПД) и снижения массы металлоконструкций, приходящейся на 1 т вырабатываемого пара.  [c.146]

Рис. 1.8. Схемы включения котлоагрегатов с псевдоожиженным слоем под давлением в ПГУ 1—камера сгорания с псевдоожиженным слоем 2—паровая турбина 3—газоониститель 4—газовая турбина 5—компрессор 6—котел-утмлизатор Рис. 1.8. <a href="/info/440147">Схемы включения</a> котлоагрегатов с <a href="/info/5512">псевдоожиженным слоем</a> под давлением в ПГУ 1—<a href="/info/30631">камера сгорания</a> с <a href="/info/5512">псевдоожиженным слоем</a> 2—<a href="/info/885">паровая турбина</a> 3—газоониститель 4—<a href="/info/884">газовая турбина</a> 5—компрессор 6—котел-утмлизатор
Положительные результаты, полученные на опытнЬй установке в Англии в лабораториях B URA, послужили основой при разработке котла с псевдоожиженным слоем для ПГУ мощностью 140 МВт. Котел работает в блоке с паровой турбиной мощностью 120 МВт и выполнен в виде горизонтального цилиндра диаметром 7,94 м, в котором заключен псевдоожиженный слой под давлением 0,82 МПа-. При размере частиц сжигаемого топлива до 1,6 мм и скорости фильтрации и=0,61 м/с псевдоожиженный слой занимает площадь 83,5 м в то время как для котлоагрегата равной мощности при атмосферном давлении, скорости фильтрации =2,44 м/с и размере частиц сжигаемого топлива до 3,2 мм площадь псевдо-ожиженного слоя составляет 186 м.  [c.19]

ГТА типа ГТ-125-950-ПГ паровые турбины секции napofenepaTopoB (общее число слоев 28) Расход воздуха на установку, кг/с Давление газов, МПа в топке парогенератора в системе очистки газов Температура газов, °С за парогенератором перед системой очистки газов перед газовой турбиной Объем очищенного газа, м /ч Давление пара перед паровой турбиной, МПа Температура пара перед паровой турбиной, °С Давление пара в конденсаторе, МПа Производительность парогенератора, т/ч Мощность электрогенераторов, МВт паровой турбины газотурбинных агрегатов Мощность установки (нетто), МВт К.п.д. установки (нетто), %  [c.27]

ФугитиБность компонента в растворе можно вычислить по уравнению (8-57), если есть данные, относящиеся к величинам парциальных мольных объемов во всей области давлений от нуля до давления системы. На практике, однако, не бывает достаточного количества данных для непосредственного применения уравнения (8-57). Обычно отсутствуют данные о парциальном мольном объеме для компонентов в паровой фазе, парофазную смесь считают идеальным раствором и фугитивности компонентов вычисляют с достаточной точностью по уравнению (8-62).  [c.246]

Соотношение, выведенное для равновесия системы твердое вещество— пар, выраженное уравнениями (9-6) и (9-18), в основном применимо и к системе пар — жидкость чистого компонента с учетом отмеченных выше ограничений. Давление пара жидкого чистого компонента можно также вычислить на основании соответствующего уравнения состояния, которое применимо и для жидкой и для паровой фазы с учетом того, что фугитивность парочой и жидкой фаз одинакова при равновесии.  [c.272]

Результаты таких вычислений, основанные на использовании уравнения Ван-дер-Ваальса, показаны на рис. 56, где фугитивности компонентов этана и гептана представлены в зависимости от концентрации этана при температуре 400 °К и давлении 20 аггил. Графическим методом последовательных приближений найдено, что фазовые составы, которые удовлетворяют критерию равновесия, определяются содержанием 0,22 мольных долей этана в жидкой фазе и 0,58 мольных долей этана в паровой фазе. Экспериментальные данные показывают, что реальные составы содержат 0,20 мольных долей этана в жидкой фазе и - 0,85 мольных долей этана в паровой фазе.  [c.275]

Для системы, в которой давление настолько низко, что паровую фазу можно рассматривать как смесь идеальных газов, фугитив-ность компонента в смеси равна парциальному давлению согласно уравнению (9-44). Для неидеального раствора фугитивность компонента в смеси удобно выразить через коэффициент активности согласно уравнению (8-60). Таким образом, критерий равновесия для этой системы может быть выражен в виде  [c.283]

Пример 4. Построить х — у-диаграмму для системы гидразин — вода при общем давлении 760 мм рт. ст., считая паровую фазу идеальным газом. Система образует азеотропную смесь приблизительно при 58,5 (мол.) гидразина с максимальной точкой кипения 120 С при давлении 1 атм [53]. Скрытая теплота испарения чистого гидразина равна 9670 тл моль при нормальной точке кипения 113,5°С и 1 атм. Использовать соотношение Ван-Лаара для определения коэффициентов активности чистых компонентов в жидкой фазе.  [c.285]


Смотреть страницы где упоминается термин Паровые Давление : [c.84]    [c.1051]    [c.69]    [c.65]    [c.146]    [c.160]    [c.142]    [c.200]    [c.201]    [c.288]    [c.24]    [c.283]   
Машиностроение Энциклопедический справочник Раздел 4 Том 13 (1949) -- [ c.138 ]



ПОИСК



2. Котлы паровые низкого н среднего давления. Руководящий технический

2. Котлы паровые низкого н среднего давления. Руководящий технический материал. РТМ 24.080.24-72. Мл Министерство тяжелого, энергетического

2. Котлы паровые низкого н среднего давления. Руководящий технический транспортного машиностроения

Аварии водогрейных котлов и паровых котлов с давлением не свыше 0,7 ати

Автоматическое регулирование работы водогрейных и паровых котлов низкого давления

Давление диаметр парового канала, определение размера

Дренаж паропроводов среднего и низкого давлений и вакуума Дренаж паровых турбин

Информационное письмо об авариях на объектах котлонадзора Аварии паровых котлов, рабо4ающих при давлении свыше 0,7 ати

Клапаны предохранительные для паровых котлов низкого давления

Конденсатор паровой турбины давление пара

Котлы паровые высокого давления

Котлы паровые, арматура пробные давления

Критическое давление для газовых паровых ядер

Листы для барабанов паровых котлов высокого давления из стали 16ГНМА (по ОСТ

Монтаж системы парового отопления низкого-давления

Насосы для паровых котлов с давлением пара 3,9 МПа

О замене вальцовочных соединений труб на сварные в барабанах и коллекторах паровых котлов низкого и среднего давления

Отложения в прямоточных котлах и проточной части паровых турбин на зарубежных энергоблоках сверхкритического давления, Шкроб

ПАРОВЫЕ КОТЛЫ С РАБОЧИМ ДАВЛЕНИЕМ ДО 2,4 МПа (24 кгссм

Пар высокого давления паровых машинах

Паровая каверна в несжимаемой жидкости. Учет поверхностного натяжения и поля переменного давления

Паровое отопление низкого давления

Паровые высокого давления

Паровые котельные низкого давления (Р0,7 аги)

Паровые котельные с давлением пара выше 0,7 аги

Паровые котлы сверхвысокого давлени

Паровые котлы среднего давления

Паровые машины регуляторы давления

Паровые турбины высокого давления

Паровые турбины высокого давления тепла

Паровые турбины двух и трёх давлений пар

Перепад давления в паровой фазе

Понижение давления на выпуске пара в паровой машине

Предвключённые паровые турбины высоко давления -

Предвключённые паровые турбины высоко давления предвключённые

Предохранительное приспособление для паровых котлов низкого давления

Предупреждение коррозии металла паровых котлов высокого давления

Преимущества и недостатки системы парового отопления низкого давления

Руководящие указания о замене вальцовочных соединений труб в барабанах и коллекторах паровых котлов среднего и низкого давления на сварные

Сварка барабанов паровых котлов высокого давления

Система обогрева фланцевых соединений цилиндров высокого и среднего давления паровых турбин

Системы парового отопления высокого давления

Системы парового отопления низкого давления

Стальные водотрубные паровые котлы с давлением пара 0,8—1,3 МПа

Стальные паровые котлы (котлоагрегаты) с давлением пара до 0,8 МПа

Стальные паровые котлы с давлением пара до 0,8 МПа (8 кгссм

Технический надзор за безопасной эксплуатацией паровых котлов и сосудов, работающих под давлением

Уравнение скорости изменения давления в паровом котле

Форсунки пневматического (или парового) распыливания высокого давления

Цилиндры высокого и среднего давления паровых турбин



© 2025 Mash-xxl.info Реклама на сайте