Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Паровые высокого давления

Водяное или паровое высокого давления с радиаторами и конвекторами  [c.381]

Паровое высокого давления с теми же нагревательными приборами при суммарном объеме помещений до 500  [c.710]

Карбюраторный двигатель. Дизель-гидравлическое. . . Паровой высокого давления.  [c.180]

Печное отопление в зданиях не более двух этажей Паровая высокого давления при объеме здания до 500  [c.346]

Паровые системы отопления высокого давления. Паровыми высокого давления называют системы, работающие под давлением от 0,07 до 0,3 МПа. На рис. 131 показана паровая система отопления высокого давления с верхней разводкой пара (тупиковая).  [c.249]


Под маневренностью понимается способность ТЭС (котлов, турбоустановок) быстро набирать нагрузку, быстро увеличивать выработку электроэнергии, что бывает необходимо в моменты наибольшего (пикового) потребления энергии предприятиями и населением. При этом котел и турбину часто приходится пускать из холодного состояния. Ввод турбины в работу и набор нагрузки возможны только после прогрева ее до температуры пара. Быстро обеспечить равномерный прогрев массивных фасонных элементов паровой турбины, работающей под высоким давлением пара, невозможно, т. е. невозможен и быстрый пуск мощной паровой турбины из холодного состояния.  [c.218]

Прочные швы применяются для соединения деталей машин и в строительных конструкциях (фермах, мостах, колоннах и др.) плотные — для открытых резервуаров жидкостей, дымовых труб, для обшивки судов прочно-плотные — для сосудов высокого давления (паровых котлов, газгольдеров и др.).  [c.211]

Проверить прочность шпилечного крепления крышки к цилиндру высокого) давления судовой паровой машины (рис. 5.43) Материал шпилек — сталь 45 Е = 2,0- 10 Мн/м ) число шпи  [c.86]

Так, наиример, исследование циклов паровых двигателей приводит к заключению, что степень совершенства превращения энергии в них повышается при применении пара высокого давления и высокой температуры, а также при применении конденсации пара при очень низких давлениях.  [c.10]

Паровые котлы высокого давления Таганрогского завода Красный котельщик имеют паропроизводительность 640 т/ч при давлении пара р = 137 МПа и температуре t = 570° С. Температура питательной воды = == 230° С. Теплота сгорания топлива составляет 25 120 кДж/кг.  [c.182]

Значение коррозионных исследований определяется тремя аспектами. Первый из них — экономический — имеет целью уменьшение материальных потерь в результате коррозии трубопроводов, резервуаров (котлов), деталей машин, судов, мостов, морских конструкций и т. д. Второй аспект — повышение надежности оборудования, которое в результате коррозии может разрушаться с катастрофическими последствиями, например сосуды высокого давления, паровые котлы, металлические контейнеры для токсичных материалов, лопасти и роторы турбин, мосты, детали самолетов и автономные автоматизированные механизмы. Надежность является важнейшим условием при разработке оборудования АЭС и систем захоронения радиоактивных отходов. Третьим аспектом является сохранность металлического фонда. Мировые ресурсы металла ограничены, а потери металла в результате коррозии ведут, кроме того, к дополнительным затратам энергии и воды. Не менее важно, что человеческий труд, затрачиваемый на проектирование и реконструкцию металлического оборудования, пострадавшего от коррозии, может быть направлен на решение других общественно полезных задач.  [c.17]


Рис. 9.3. Схема эжектора паровой конденсационной установки 1 — пар высокого давления, 2 — пар из конденсатора Рис. 9.3. Схема <a href="/info/93508">эжектора паровой</a> <a href="/info/121889">конденсационной установки</a> 1 — пар <a href="/info/251457">высокого давления</a>, 2 — пар из конденсатора
При высоких давлениях, когда скорость изменения пузырька ничтожна (Ja < 1), определяющую роль в распределении давлений в окружающей пузырек жидкости играют массовые силы. Здесь естественно обратиться к рассмотренным в гл. 2 задачам гидростатики газожидкостных систем, в которых анализируется возникновение неустойчивости осесимметричных равновесных поверхностей раздела при достижении определенного (критического) объема парового пузырька. При Ja 1 распределение давления в окрестности растущего пузырька обусловлено не только гидростатикой, но и движением расталкиваемой пузырьком жидкости. В этих условиях модель, позволяющая рассчитывать размер пузырька в момент отрыва, должна объяснять, почему, начиная с некоторого этапа эволюции пузырька, уравнение (6.45) продолжает выполняться лишь при условии отделения парового объема от стенки. Таким образом, естественно в первую очередь рассмотреть указанные два предельных случая отрыв пузырьков при Ja < 1 (гидростатическое приближение) и Ja 1 ( инерционная схема отрыва ),  [c.274]

J — паровой котел 2 — пароперегреватель 3 — дополнительный пароперегреватель 4 —турбина высокого давления 5 — турбина низкого давления 6 — электрогенератор 7 — конденсатор 8 —  [c.172]

В части высокого давления (ЧВД) паровой турбины К-200-130 пар расширяется адиабатно от начальных параметров />1 = 12,75 МПа и Tj = 838 К. Ro = 2,45 МПа и Та = 613 К. Определить эксергетический к. п. д. ЧВД, пользуясь диаграммами состояния водяного пара. Температура окружаюш,ей среды 273 К.  [c.152]

Выше было показано, что при истечении из отверстий нельзя достигнуть скорости больше критической. Между тем для эффективной работы паровых и газовых турбин очень важно получить как можно большую скорость истечения. В практике теплогазоснабжения такого рода задача возникает при конструировании газовых эжекционных горелок высокого давления, форсунок воздушного распыливания жидкого и пылевидного топлива и в других случаях.  [c.255]

Задача 3.74. Конденсационная турбина с одним промежуточным отбором пара при давлении />., = 0,4 МПа работает при начальных параметрах пара ро = 4 МПа, /q = 425° и давлении пара в конденсаторе j, = 3,5 10 Па. Определить расход охлаждающей воды и кратность охлаждения для конденсатора паровой турбины, если расход конденсирующего пара Z), = 6,5 кг/с, температура охлаждающей воды на входе в конденсатор / = Ю°С, температура выходящей воды на 5°С ниже температуры насыщенного пара в конденсаторе и относительные внутренние кпд части высокого давления и части низкого давления  [c.142]

Задача 3.75. Конденсационная турбина с одним промежуточным отбором пара при давлении />п = 0,4 МПа работает при начальных параметрах пара Рй = Ъ МПа, /о=380 С и давлении пара в конденсаторе р = А 10 Па. Определить расход охлаждающей воды и кратность охлаждения для конденсатора паровой турбины, если расход конденсирующего пара Z>i=8,5 кг/с, температура охлаждающей воды на входе в конденсатор в=11°С, температура воды на выходе из конденсатора f = 21° относительный внутренний кпд части высокого давления /о, = 0,74 и относительный внутренний кпд части низкого давления 1, = 0,76.  [c.143]

Прессор, а кинетическую энергию струи рабочего пара самого хладоагента, только более высокого давления. Для этой цели применяют паровой эжектор, а рабочий пар получают в парогенераторе в результате затрат теплоты, выделившейся при сжигании топлива.  [c.225]


Для пленочного кипения характерно существование паровой пленки, покрывающей поверхность нагрева. Пленочное кипение происходит при большей разности температур между твердой поверхностью и жидкостью. Для воды (и большинства органических жидкостей) при атмосферном давлении этот температурный напор составляет > 100°. Пленочное кипение наблюдается в быстродействующих перегонных аппаратах, при кипении криогенных жидкостей, охлаждении двигателей на химическом топливе, охлаждении реакторов и др. При высоких давлениях коэффициент теплоотдачи при пленочном кипении может так возрасти, что пережога поверхности нагрева не наступает. При высоких температурах при пленочном кипении значительное количество теплоты передается излучением, поэтому коэффициент теплоотдачи при пленочном кипении зависит от излучательных свойств поверхности теплообмена, поверхности жидкости и самого пара. Расчетные зависимости для коэффициентов теплоотдачи при ламинарном движении паровой пленки могут быть получены теоретическим путем. В развернутой форме эта зависимость имеет вид  [c.202]

Если в паровой фазе образовалась жидкая капелька радиуса р кр, то такая капелька будет находиться в равновесии с окружающим ее паром, причем давление пара р"р будет связано с р кр соотношением (6-20) однако это равновесие не будет устойчивым, вследствие чего с течением времени начнется рост капельки. Для капелек радиуса, большего, чем р р. давление пара оказывается, как это следует из формулы (6-20), слишком высоким. Давление пара может понизиться за счет конденсации части пара на этих капельках в результате этого размеры капелек еще более возрастут. Другими словами, по отношению к каплям радиуса, большего, чем р кр, пар давления р будет неустойчив, так что если поместить подобные капли в пар, последний начнет конденсироваться на них до полного перехода в жидкую фазу. Рост капель сверхкритического размера происходит как за счет присоединения к ним отдельных молекул, так и за счет слияния с ними капелек докритического размера.  [c.221]

В этом случае он защищает выходные витки от пережога и поддерживает заданное значение температуры пара на выходе. В барабанных котлах высокого давления (р = 13,8 МПа) широкое распространение получили схемы регулирования пара впрыском собственного конденсата (рис. 142). После нагрева воды в экономайзере 8 и циркуляционном контуре 1 насыщенный пар из барабана 2 идет двумя потоками в количестве D y на установку 9 получения собственного конденсата и в количестве D— Dg на нагрев пара в потолочном перегревателе <3 и в ширме 5. В установке 9 пар конденсируется при передаче теплоты питательной воде. В результате 1ку > 1 в и 1вэ > 1пв- Полученный конденсат с теплосодержанием в количестве D i и Dgi подается для регулирования температуры пара в паровой тракт котла перед холодным конвективным пакетом 7 ширмы и перед выходной ступенью 6. Остаток конденсата D y — D i — С>в2 насосом 4 перекачивается в барабан 2. Благодаря теплоте, полученной от пара питательной водой, /вэ i> t ne-  [c.239]

Центральное системы отопления подразделяются по виду теплоносителя — на водяные, паровые, воздушные и комбинированные по способу перемещения теплоносителя — на системы с естественной циркуляцией (гравитационные) и насосные по начальным параметрам теплоносителя — на низкотемпературные водяные (при температуре воды меньше 105 °С), высокотемпературные водяные (при температуре воды больше 105°С), паровые низкого давления (для пара при избыточном давлении ризо = =5- -70 кПа) и паровые высокого давления (для пара избыточного давления риаб5 70 кПа).  [c.379]

Форсунки с расныливанием воздухом низкого даилония лучше регулируются, чем воздушные или паровые высокого давления. При распыливаини воздухом нет добавочной потери в трубу (по сравнению с паром).  [c.81]

После сварочных работ места наплавки подвергаются механической обработке, а цилиндры — гидравлическому испытанию при следующих величинах давлений паровые высокого давления — 20 кГ/см паровые низкого давления — 13 кПт воздушные высокого давления — 13 кПсм воздушные низкого давления — 7 кПсм .  [c.87]

По способу распыления топлива мазутные форсунки делятся на четыре типа механические форсунки непосредственного распыления форсунки паровые высокого давления форсунки низкого давления с распЫоТением воздухом от вентилятора комбинированные форсунки с паровоздушным распылением.  [c.62]

Деаэрацию осуществляют противотоком воды (в виде бризг или тонких струй) и пара. При этом достигается большая поверхность контакта воды с паром, и из воды испаряется кислород и некоторое количество растворенного диоксида углерода (рис. 17.2). Во время этого процесса вода нагревается и становится пригодной для питания бойлеров. Паровые деаэраторы такого рода являются стандартным оборудованием для всех стационарных водяных котлов высокого давления. Если необходимо получить холодную воду, растворенные газы удаляют, понижая давление, что достигается с помощью механических или пароструйных насосов. Этот способ называется вакуумной деаэрацией. Для него создано оборудование, способное деаэрировать миллионы литров воды в день.  [c.276]

В водяных реакторах высокого давления атомных электростанций трубы теплообменников изготавливают в основном из отожженного инконеля 600. Теплоноситель реактора поступает в трубы при 315 С и выходит при температуре на 30—35 °С ниже. Вода, контактирующая с наружной поверхностью труб, проходит подготовку дистилляцией (минимум растворенных солей и кислорода, слабая щелочность создается с помощью NH3). Утоньшение и межкристаллитное КРН труб наблюдается на входных участках вблизи трубной доски в щелях и местах отложения шлама [И ]. Анализ смывов этих отложений показал, что они имеют щелочную реакцию и содержат большое количество натрия. На основании этих результатов для ускоренных испытаний на стойкость к КРН в условиях работы паровых установок сплав помещали в горячие растворы NaOH (290—365 °С). Выяснилось, что термическая обработка инконеля 600 при 650 °С в течение 4 ч или при 700 С в течение 16 ч и более значительно повышает его стойкость к КРН в растворах NaOH [9, 12, 13]. Попутно дости-  [c.364]


Тепловая электроетавция. Более 90% используемой человечеством энергии получается за счет сжигания угля, нефти, газа. Наиболее удобной для распределения между потребителями является электрическая энергия переменного тока. Для преобразования энергии химического горючего в электроэнергию используются тепловые электростанции. На тепловой электростанции освобождаемая при сжигании топлива энергия расходуется на нагревание воды, превращение ее в пар и нагревание пара. Струя пара высокого давления направляется на лопатки ротора паровой турбины и заставляет его вращаться. Вращающийся ротор турбины приводит во вращение ротор генератора электрического тока. Генератор переменного тока осуществляет превращение механической энергии в энергию электрического тока.  [c.238]

Кинематографические исследования показывают, что существуют весьма сильные различия в поведении пузырьков при высоких и низких давлениях. В области высоких давлений пузырьки на поверхности растут относительно медленно, при этом их форма практически в течение всего периода роста близка к сферической (точнее, пузырек имеет вид усеченной сферы). Перед отрывом диаметр пузырька составляет несколько десятых долей миллиметра. Так, по данным [18], при давлениях 30—100 бар паровой пузырек за время порядка 0,2—0,3 с вырастает до своего предотрывного размера, равного 0,2—0,3 мм. Последовательные стадии роста парового пузырька при высоких давлениях схематически показаны на рис. 6.10, а.  [c.263]

Действительно, анализ кинограмм процесса кипения при высоких давлениях показывает, что шероховатость поверхности нагрева не позволяет основанию пузырька расползаться по мере его роста. При этом получается, что пузырек как бы выдувается из впадины на поверхности нагрева. Поэтому для оценки предотрывного диаметра парового пузырька при кипении в области высоких давлений (медленно растущие пузырьки) можно рекомендовать выведенную в гл. 2 формулу (2.26а)  [c.275]

При кипении в технических условиях паровые пузырьки образуются на обогреваемой твердой стенке. Центрами парообразования служат элементы микрошероховатости стенки (впадины, царапины), обладающие пониженной локальной смачивостью [2, 10, 13, 41]. Перегрев твердой поверхности, необходимый для парообразования, в большинстве практических ситуаций невелик для воды при атмосферном давлении составляет 5—7 К, а при высоких давлениях — доли градуса. Использование этого значения перегрева в (8.3) дает представление о масштабе элементов поверхностной шероховатости, служащих центрами парообразования. При атмосферном давлении для воды это единицы микрометров с ростом приведенного давления Л уменьшается например, для жидкого гелия при атмосферном  [c.342]

Если давление и температура достаточно далеки от критических, то в жидкостях, прошедших очистку, которая применяется в современных тепловых и атомных электростанциях, парообразование на уже готовых зародышах, снимающее метастабильность среды, предотвращает образование глубоко метастабильной, т. е. сильно перегретой жидкости с 100 К, когда только и может стать заметным образование паровых зародышей за счет термофлуктуаций. В указанных жидкостях (а это обычно вода) возможные перегревы составляют АГ 10 К даже в таких быстрых процессах, как истечение при разгерметизации сосудов высокого давления, и термофлуктуационное зародышеобразованпе не успевает проявиться.  [c.133]

И К. п. д. установки из-за дополнительных необратимых потерь влажного пара на лопатках. Под воздействием капельной влаги пара происходит эрозия лопаток. Поэтому в установках с высокими начальными параметрами пара применяют промежуточный перегрев пара, что снижает влажность пара в процессе расширения и ведет к повышению к. п.д. установки. Рассмотрим схему установки с промежуточным перегревом пара. (рис. 11.9) и цикл этой установки в Т — 5-диаграмме (рис. 11.10). Из парового котла пар поступает в основной пароперегреватель 2 и далее в турбину высокого давления 4, после расширения в которой пар отводится в дополнительный пароперегреватель 3, где вторично перегревается при давлении р р до температуры Ts. Перегретый пар поступает в турбину низкого давления 5, расширяется в ней до конечного давления р2 и направляется в конденсатор 7. Влажность пара после турбины при наличии дополнительного перегрева его значительно меньше, чем без дополнительного перегрева хд>Х2. Применение промежуточного перегрева пара повышает к. п.д. реальных установок примерно на 4%. Этот выигрыш получают как за счет повышения относительного к. п.д. турбины низкого давления, так и за счет некоторого повышения суммарной работы изо-энтропного расширения на участках цикла 1—7 и 8—9 (см. рис. 11.10) по отношению к изоэнтропной работе расширения на участке 1—2 в силу того, что разность энтальпий процесса 8—9 больше разности энтальпий процесса 7—2, так как изобары в к — 5-диаграммах несколько расходятся слева направо (см. рис. 8.11).  [c.172]

К качеству воды указанных групп водопотребления предъявляют самые разнообразные требования. Вода, используемая для охлаждения, должна быть маложесткой, маломутной (ниже 50 мг/л), не обладать коррозионными свойствами для питания паровых котлов высокого давления должна быть полностью обессоленной  [c.169]

Пар из котла 1 по паропроводу свежего пара 12 направляется в цилиндр высокого давления паровой турбины 2, откуда по паропроводу 13 поступает на промперегрев. Из промежуточного пароперегревателя 14 пар проходит цилиндры среднего и низкого давлений паровой турбины и сбрасывается в конденсатор. Из конденсатора 3 конденсат откачивается конденсаторными насосами 4 и через основной эжектор 5, охладитель газоохладителей 11, подогреватели низкого давления 9 и деаэратор 6 поступает на всас предвключенных (бустерных) насосов 8. Предвклю-ченные насосы поднимают давление на всасе питательных насосов 10, которые подают воду через подогреватели высокого давления 15 в котел 1.  [c.217]

На рис. 9.4,а представлена схема простейщей пароэжекторной установки, работающей следующим образом. Водяной пар низкого давления рг поступает из испарителя, находящегося в охлажденном объеме /, в смесительную камеру парового эжектора 2. В эту же камеру подается рабочий пар более высокого давления Рь получаемый в парогенераторе 3. Рабочий пар, проходя через сопло эжектора, расширяется и разгоняется до большой скорости. Струя смеси паров поступает в диффузор эжектора, где ее кинетическая энергия преобразуется в потенциальную энергию давления. Смесь паров  [c.225]

Гашение кинетической энергии струи пароводяной смеси и начальное разделение последней в барабане 1 котла среднего давления осуществляется с помощью отбойных щитков 2 (рис. 105, а), жалюзидроссельных стенок с горизонтальным расположением пластин и т. п., а в барабане котла высокого давления с помощью внутрибарабанных циклонов 6 (рис. 105, б). Равномерность распределения пара по сечению барабана и пароотводящим трубам обеспечивается применением уравнительных дроссельных щитов как в водяном объеме (погруженный щит 12 с отверстиями, рис. 105, в), так и в паровом объеме на выходе из барабана (пароприемный потолок 4, рис. 105, а, б).  [c.160]

Прираш,ение энтальпий в перегревателях высокого давления, располагаемых в опускном газоходе, то же, что в соединительном. Для промежуточного перегревателя с паро-паровым теплообменником приращение энтальпии в пакете, расположенном после ППТО, около 50 % общего тепловосприятия перегревателя низкого давления. Для экономайзеров энтальпия рабочего тела на выходе / " берется по справочным данным.  [c.216]



Смотреть страницы где упоминается термин Паровые высокого давления : [c.13]    [c.69]    [c.61]    [c.38]    [c.276]    [c.276]    [c.116]    [c.106]    [c.202]    [c.335]   
Машиностроение Энциклопедический справочник Раздел 4 Том 13 (1949) -- [ c.10 , c.46 , c.230 ]



ПОИСК



Давление высокое

Котлы паровые высокого давления

Листы для барабанов паровых котлов высокого давления из стали 16ГНМА (по ОСТ

Пар высокого давления паровых машинах

Паровые Давление

Паровые турбины высокого давления

Паровые турбины высокого давления тепла

Предвключённые паровые турбины высоко давления -

Предвключённые паровые турбины высоко давления предвключённые

Предупреждение коррозии металла паровых котлов высокого давления

Сварка барабанов паровых котлов высокого давления

Система обогрева фланцевых соединений цилиндров высокого и среднего давления паровых турбин

Системы парового отопления высокого давления

Форсунки пневматического (или парового) распыливания высокого давления

Цилиндры высокого и среднего давления паровых турбин



© 2025 Mash-xxl.info Реклама на сайте