Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Асинхронные двигатели нии постоянным током

Фиг. 6. Регулировочные характеристики при питании асинхронного двигателя постоянным током. Фиг. 6. <a href="/info/31887">Регулировочные характеристики</a> при питании <a href="/info/31737">асинхронного двигателя</a> постоянным током.

Рассматриваемый способ управления основан на совместном питании обмоток асинхронного двигателя постоянным током и трехфазным переменным током обратной последовательности. Трехфазная система токов приводит к созданию двигательного момента в нормальном режиме работы асинхронной машины или при снижении напряжения питания (кривые 1 я 2 на рис. 7-43 11-839  [c.161]

Рис. 20.1. Механические характеристики двигателей электродвигатели асинхронные (а), постоянного тока с параллельным (6) и последовательным (в) возбуждением механические пружинные (г), паровые (д), внутреннего сгорания е) Рис. 20.1. <a href="/info/2039">Механические характеристики двигателей</a> <a href="/info/12082">электродвигатели асинхронные</a> (а), <a href="/info/461800">постоянного тока</a> с параллельным (6) и последовательным (в) возбуждением механические пружинные (г), паровые (д), внутреннего сгорания е)
Следовательно, движущий момент, развиваемый на валу асинхронного двигателя, как и в случае двигателя постоянного тока с независимым (или параллельным) возбуждением, в первом приближении выражается линейной функцией угловой  [c.291]

Пленка приводится в движение однофазным асинхронным двигателем, питаемым переменным током 127 или 220 в. Сцепление двигателя с лентопротяжным механизмом осуществляется электромагнитной муфтой, управление которой можно вынести за пределы осциллографа, для чего предусмотрены специальные зажимы. Это позволяет производить автоматическую и дистанционную съемки. Источник питания можно заменить двигателем постоянного тока 24 в, причем одновременно автоматически переключаются на 24 в электромагнитная муфта, осветительная лампа и отметчик времени.  [c.179]

До последнего времени привод угольных комбайнов в СССР осуществлялся исключительно нерегулируемыми асинхронными двигателями с короткозамкнутым ротором, обладающими рядом недостатков. В настоящее время наметилась возможность перехода к регулируемому приводу угольных комбайнов Б условиях работы с резко переменной нагрузкой. Нашей промышленностью был освоен выпуск силовых тиристоров—кремниевых выпрямителей, позволивших осуществить регулируемый привод органов резания комбайнов в системе управляемый выпрямитель — двигатель постоянного тока [30].  [c.121]


Вместе с тем, как показали исследования стационарных режимов применительно к двигателям постоянного тока с независимым (или параллельным) возбуждением и асинхронных электродвигателей, с достаточной для целей практики точностью можно ограничиться следующим выражением динамической характеристики [3]  [c.69]

Таким образом, линеаризованная динамическая характеристика асинхронного двигателя (2.29) может рассматриваться как уточненная по сравнению с характеристикой (2.30). Отметим, что динамическая характеристика (2.29) совпадает с уравнением (2.24), ранее полученным для двигателей постоянного тока с независимым возбуждением, в котором следует положить  [c.27]

Сравнивая выражения (1.20) и (1.33), нетрудно видеть, что динамические процессы в асинхронном двигателе и двигателе постоянного тока на характерных режимах работы механического привода описываются идентичными математическими моделями. Следовательно, однородные цепные динамические схемы двигателя постоянного тока будут справедливы и для описания процессов в асинхронном двигателе (рис. 8).  [c.23]

Выше при динамическом расчете цикловых механизмов мы принимали, что угловая скорость ведущего звена со является постоянной. Теперь рассмотрим некоторые коррективы, связанные с учетом неравномерности вращения. В гл. 1 мы уже останавливались на предпосылках, позволяющих при этом базироваться на сравнительно простых динамических моделях, включающих динамическую характеристику электродвигателя. Последняя в упрощенной форме может быть описана для асинхронных электродвигателей и двигателей постоянного тока в установившихся режимах работы следующим дифференциальным уравнением [12, 13]  [c.134]

Полученное уравнение в общем случае является уравнением первого порядка, но нелинейным, а потому не может быть решено в квадратурах. В конечном виде его можно представить в том случае, когда Мд а) оказывается линейной функцией угловой скорости [см. равенство (7)]. При приближенном решении задачи можно считать, что у электродвигателей постоянного тока с параллельным возбуждением и у асинхронного двигателя трехфазного тока при устойчивой работе развиваемый момент является линейной функцией угловой скорости.  [c.51]

Фиг. 3. Различные режимы работы электроприводов постоянного и переменного тока. Группа А соединений относится к шунтовому двигателю постоянного тока группа Б — к асинхронному Фиг. 3. Различные режимы работы электроприводов постоянного и <a href="/info/271102">переменного тока</a>. Группа А соединений относится к шунтовому <a href="/info/120512">двигателю постоянного тока</a> группа Б — к асинхронному
В асинхронных двигателях приходится иметь дело с двумя номинальными токами -- статора и ротора. Для получения величин относительных сопротивлений необходимо ввести особое понятие о номинальном (фиктивном) сопротивлении машины. Для двигателей постоянного тока всех типов под номинальным сопротивлением понимается такое сопротивление якорной цепи, через которое при номинальном напряжении сети и неподвижном якоре  [c.6]

Недостатком его следует считать более высокую стоимость, что объясняется необходимостью преобразовывать переменный ток в постоянный вращающимися машинами. Нормальная система Леонарда состоит из 1) основного двигателя постоянного тока, приводящего исполнительный механизм 2) генератора постоянного тока, питающего основной двигатель (генератор Леонарда) 3) двигателя, вращающего генератор этот двигатель при малых мощностях или резко пиковых нагрузках — обычно асинхронный, при больших мощностях и отсутствии очень больших пиков на-  [c.11]

Для напряжённого повторно-кратковременного режима короткозамкнутые двигатели подходят менее всего, так как в обмотках их роторов должно рассеиваться всё тепло от пусковых и тормозных токов. В двигателях постоянного тока и в асинхронных с кольцами большая часть этого тепла рассеивается в добавочных пусковых сопротивлениях, а не в обмотках якоря или ротора. Возможность создания специальных типов короткозамкнутых двигателей небольших мощностей, рассчитанных на пуск до 3000—4000 раз в час, не ограничена.  [c.20]


Для очень напряжённых повторно-кратковременных режимов работы двигателей при средних мощностях (металлургические заводы) наиболее подходят двигатели постоянного тока. Хотя многие задачи в этом случае могут быть решены путём использования асинхронных двигателей с кольцами, однако обычно менее целесообразно, т. е. с меньшей скоростью операций. При выборе между двигателями постоянного и переменного тока необходим тщательный анализ для установления, какой тии привода наиболее эффективен.  [c.20]

Асинхронные двигатели с кольцами Практически 1 0,8 Такой же плавный, как и в двигателях постоянного тока, питаемых от нормального напряжения Практически нет При мощностях свыше 150—200 кет совершенно не экономичны. Получение очень низких скоростей сопряжено с потерями. Подходят для повторно-кратковременного режима  [c.21]

Строго теоретически время пуска равно бесконечности. Практически верхний предел интегрирования следует брать равным 0,95 Яц-При пуске двигателя постоянного тока или асинхронного под реостатом изменение момента двигателя невелико. Вместо него можно взять среднее значение Ма = где а обычно  [c.28]

В целях уменьшения расхода энергии при пуске в ход в часто пускаемых электроприводах необходимо стремиться 1) к уменьшению приведённого махового момента системы 2) махового момента электродвигателей. Тепло во время пуска двигателей постоянного тока и асинхронных с кольцами выделяется как в главных цепях, так и в добавочных сопротивлениях. В асинхронных короткозамкнутых двигателях оно выделяется в обмотке ротора. Поэтому конструирование короткозамкнутых асинхронных двигателей на большое число пусков в час сложно. Короткозамкнутые двигатели для таких условий могут быть лишь малых мощностей с уменьшенным маховым моментом и повышенным номинальным скольжением. Применение двигателей подобного типа даёт возможность вести производственный процесс более интенсивно и с меньшими потерями электрической энергии.  [c.29]

Метод эквивалентного момента применим лишь к двигателям, у которых магнитный поток Ф постоянен (шунтовые двигатели постоянного тока, синхронные двигатели, асинхронные двигатели с высоким os ср при нормальном режиме работы). Для пусковых и тормозных режимов короткозамкнутых асинхронных двигателей, для сериесных и компаундных двига-  [c.35]

Последнее обстоятельство мало существенно в шунтовых двигателях постоянного тока и в асинхронных, но имеет большое значение в сериесных и компаундных двигателях постоянного тока в связи с тем, что в них с  [c.37]

Механические переходные режимы электропривода с шунтовой характеристикой при постоянном статическом моменте. Приводимое ниже решение охватывает все режимы шунтовых двигателей постоянного тока при неизменном магнитном потоке и рабочие режимы асинхронных двигателей при работе в пределах от = 0 до т. е. от  [c.38]

Регулирующие р еос тэты служат для длительного регулирования скорости двигателя изменением сопротивления в цепи якоря двигателей постоянного тока и в цепи ротора асинхронных двигателей.  [c.49]

В качестве привода к правйльным машинам обычно устанавливают асинхронные двигатели, а в случае необходимости в регулировке скорости — шунтовые двигатели постоянного тока.  [c.997]

Для формирования библиотеки моделей регуляторов напряжения (PH) следует учесть, что в транспортных ЭЭС используются регуляторы трех конструктивных исполнений на магнитных усилителях, транзисторно-тиристорные и транзисторные с широтно-импульсной модуляцией. В библиотеке моделей преобразователей Пр должны быть включены модели трансформаторов Три трансформаторно-выпрямительных устройств ТВУ. В библиотеке П должны быть учтены типовые нагрузки транспортных ЭЭС симметричные и несимметричные активноиндуктивные нагрузки, двигатели асинхронные и постоянного тока, импульсные нагрузки.  [c.227]

По роду тока двигатели постоянного тока с параллельным или независимым возбуждением (шунтовыс), с последовательным возбуждением (сериесные) и смешанным возбуждением (комиаундные) (рис. 10) трехфазного переменного тока асинхронные с фазным и короткозамкнутым ротором и синхронные асинхронные однофазного oefteMeHfioro тока (небольшой мощности),  [c.115]

I — синхронный двигатель 2 — двигатель постоянного тока параллельного или независимого иозбуждения и асинхронный двигатель в рабочем диапазоне  [c.124]

Если механизм приводится в движение двигателем, механическая характеристика которого нелинейна, то для получения аналитического решения уравнения движения эту характеристику можно аппроксимировать кривой второго или более высокого порядка. Подобные случаи характерны для двигателей постоянного тока с последовательным возбуждением, крановых асинхронных электродвигателей, а также для гидро- и тепловых двигателей. Большое значение для точности решения имеет характер изменения MOMeHia сопротивления. Если движущий момент аппроксимировать отрезком параболы, то при J = onst уравнение движения будет  [c.290]

Программная система позволяет применять для оптимизационных расчетов гиродвигателей методы сканирования, статистических испытаний, градиента, случайного поиска, покоординатного улучшения функции цели (Гаусса—Зейделя). При этом имеется возможность проводить расчеты ГД различных типов асинхронных с короткозамкнутым ротором, синхронных с магнитозлектрическим возбуждением, синхронных реактивных, бесконтактных двигателей постоянного тока, а также ГД различных конструктивных схем и исполнений, с различными алгоритмами управления, что достигается применением общих методов и алгоритмов анализа физических процессов, определяющих функциональные свойства проектируемых объектов, рациональным выбором входных данных.  [c.231]


При исследовании переходных режимов в электромеханических системах с асинхронным двигателем, в отличие от систем с двигателями постоянного тока, можно пренеб )ечь электромагнитными переходными процессами и пользоваться всегда статической характеристикой двигателя, которую удобно представигь в виде зависимости движущего момента на валу ротора tjp величии ,F скольжения s (рис. 8i,a). Аналитическое г.Ы1)а>ксние этой характеристики обычно выражается (1)ормулой  [c.289]

Анализируя характеристику (3.133), легко убедиться в том, что она соответствует динамической модели, при которой ротор соединен со статором посредством некоторого упругого элемента с коэффициентом жесткости Сд = (удйдТд) и последовательно включенного демпфера, вызывающего линейную диссипативную силу с коэффициентом пропорциональности Ьд = (vдQд) (см. рис. 18). При реальных соотношениях параметров для асинхронных двигателей и двигателей постоянного тока обычно  [c.136]

Для управления двигателями постоянного тока применяется система генератор — двигатель. Регулирование возбуждения генераторов осуществляется при помощи электромашинных усилителей, работающих в каскаде с промежуточными магнитными усилителями. Для механизма шагания установлено четыре высоковольтных асинхронных электродвигателя мощностью по 260 кет. Схема предусматривает автоматическое управление механизмом шагания.  [c.79]

Механическая характеристика я =/ (М) асинхронного двигателя в устойчивой части аналогична характеристике шунтового двигателя постоянного тока. Падение скорости при нагрузке невелико, скольжение достигает IQo/j у малых и 2 >/о у больших двигателей. До опрокидывания момент двигателя изменяется проп орционально скольжению. Коэфициент мощности при полной нагрузке os9 = 0,75-=-0,9.  [c.538]

Комбинированные системы тока с преобразованием рода тока на электроподвижном составе являются результатом стремления объединить преимущества однофазного тока высокого напряжения для питания контактной сети с преимуществами тяговых двигателей постоянного тока или трёхфазных асинхронных.  [c.416]

Полагая osф=l, можно использовать эти формулы для двигателей постоянного тока для асинхронных двигателей должны быть учтены число фаз и схема соединений.  [c.445]

Асинхронные двигатели применяются на электровозах трёхфазного тока и однофазного тока с преобразованием числа фаз. Асинхронные двигатели имеют резко выраженную шун-товую характеристику, падение скорости обусловлено скольжением ротора и составляет всего 3 —б /о. От шунтовых двигателей постоянного тока они отличаются точным совпадением скоростных характеристик, благодаря чему при жёстком допуске на диаметры колёс возможна параллельная работа при индивидуальном приводе. Равенство диаметров колёс и.тн групповой привод обеспечивают параллельную работу только в пределах одного электровоза. При двойной тяге электровозов с колёсами разных диаметров необходимо частичное введение сопротивлений в цепь ротора двигатели одного из электровозов.  [c.455]

Сравнение видов электрического торможения. Рекуперативное торможение можно применять в шунтовых двигателях постоянного тока с регулированием скорости током возбуждения и в короткозамкнутых асинхронных Двигателях с переключением полюсов. Выбор между противовключеняем и динамическим торможением зависит от требуемой быстроты торможения и точности остановки при одинаковых исходных токах в якоре торможение противовключением более эффективно, так как тормозной момент при противо-включении меняется мало, а при динамическом торможении спадает до нуля. Динамическое торможение практически считается наиболее точным. Для реверсивных приводов чаще применяют противовключение, для нереверсивных— динамическое, так как схема последнего проще.  [c.8]

Выбор рода тока для электроприводов. На районных электрических станциях энергия генерируется в форме переменного тока и на промышленные предприятия подаётся трёхфазный ток. Поэтому во всех случаях, где применение двигателей постоянного тока не вызывается производственной необходимостью, следует устанавливать электродвигатели трёхфазного тока. Потребность в двигателях постоянного тока может возникать I) при широком и плавном регулировании скорости, 2) при большом числе пусков в час и вообще при напряжённом повторно-кратковременном режиме 3) при работе электроприводов по специальному графику скорости, пути 4) при необходимости в особой плавности пуска и торможении, перехода от одного рабочего процесса к другому 5) при необходимости кроме основных, рабочих, получить и заправочные скорости механизмов. Краткое сопоставление различных электрических типов электродвигателей в отношении регулирования скорости дано в табл. 4, из которой видно, что во всех тех случаях, где требуется плавное регулирование скорости в пределах 1 3 и выше, наиболее целесообразно применять двигатели постоянного тока или систему Леонарда, а в малых мощностях электронноионный привод. Последний в эксплоатационном отношении достаточно не изучен. При ступенчатом регулировании до 1 4 преимущественно при малых мощностях (особенно в металлорежущих станках) могут быть использованы короткозамкнутые асинхронные двигатели с переключением полюсов. Коллекторные двигатели переменного тока в указанных пределах экономичны в основном лишь при установке  [c.20]

Для привода, работающего на режиме запусков, применяются главным образом специальные асинхронные краново-металлургиче-сь ие двигатели трёхфазного тока, или компа-ундные, или сериесные краново-металлургические двигатели постоянного тока. В обоих случаях для быстрой остановки механизма на-  [c.945]

Для машин, рабзтающих на длительном режиме, в качестве привода выбираются асинхронные двигатели трёхфазного тока или же закрытые шунтовые двигатели постоянного тока типа КПД или ПН. Если по технологическим соображениям требуется регулировка числа оборотов, то установка шунтовой машины станозится обязательной.  [c.947]

В СССР в качестве момснтного двигателя используются двигатели постоянного тока, управляемые с помощью амплидина, или обычные асинхронные двигатели, у которых изменён наклон характеристики путем ввода добавочного сопротивления в цепь якоря.  [c.947]


Смотреть страницы где упоминается термин Асинхронные двигатели нии постоянным током : [c.76]    [c.325]    [c.39]    [c.25]    [c.16]    [c.21]    [c.6]    [c.33]    [c.36]    [c.1057]   
Машиностроение Энциклопедический справочник Раздел 4 Том 9 (1950) -- [ c.845 ]



ПОИСК



Асинхронный двигатель

Двигатель постоянного тока

для постоянного тока



© 2025 Mash-xxl.info Реклама на сайте