Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Траектория света

В действительности это не так — существует конечная максимальная скорость распространения взаимодействий, которая равна скорости света в вакууме. Поэтому третий закон Ньютона (а также и второй) имеет определенные пределы применимости. Однако при скоростях тел, значительно меньших скорости света, с которыми имеет дело ньютоновская механика, оба закона выполняются с очень большой точностью. Свидетельством этому являются хотя бы расчеты траекторий планет и искусственных спутников, которые проводятся с астрономической точностью именно с помощью законов Ньютона.  [c.42]


Следовательно, если найдена траектория упомянутой материальной точки, то одновременно найдена форма кривых, вдоль которых распространяются лучи света в неоднородной среде. Конечно, полная идентификация задачи о движении материальной точки и задачи о распространении света в оптически неоднородной среде требует дополнительного исследования ).  [c.209]

Наша траектория в пространстве — времени называется мировой линией это маршрут, задающий наше положение и время. Так как скорость нашего перемещения никогда не может превзойти скорость света, то все события, уже совершившиеся в нашей жизни и до нее, находятся внутри нашего конуса  [c.368]

На рис. 35.3, а показана траектория, по которой глаз последовательно осматривает детали объекта, а на рис. 35.3, б — сам объект. Точки соответствуют тем местам, на которых глаз останавливается, черточки — перемещению глаза. Таким образом, глаз как приемник света сочетает в себе особенности, присущие фотографическому и фотоэлектрическому методу регистрации. Одновременно, с хорошим разрешением воспринимается конечная, но небольшая часть изображения. Все же изображ ение регистрируется за счет последовательного просматривания. Такое устройство позволяет концентрировать внимание на наиболее существенных деталях предметов и вместе с тем получать некоторое общее представление обо всём, что находится в поле зрения. Благодаря этой особенности глаза мы не замечаем ограниченности поля ясного зрения и оцениваем поле зрения глаза по вертикальному и горизонтальному направлениям примерно в 120—150°, т.е. значительно больше, чем у очень хороших оптических инструментов.  [c.676]

Таким образом, направление максимальной интенсивности излучения Черенкова — Вавилова определяется углом 0 между образующей конуса и его осью OL, удовлетворяющим условию (34.17). Если н<с, т. е. скорость электрона меньше фазовой скорости света, то соответствующее направление 0 невозможно. В этом случае траекторию электрона можно разбить на такие отрезки, чтобы от крайних точек каждого из них волны приходили в точку Р с разностью хода, равной к. Волны, приходящие от всех точек каждого из таких отрезков, полностью погасят друг друга вследствие интерференции. Значит, то же произойдет и с волнами, приходящими от всех точек среды, лежащих на пути движения электрона. Таким образом, в направлениях, определяемых условием (34.17), электрон (точнее, среда, в которой он движется) излучает электромагнитные волны, а в остальных направлениях излучения не будет.  [c.265]


Эллиптическая поляризация света — поляризация, при которой проекция траектории, описываемой концом вектора Е на плоскость, перпендикулярную лучу, имеет вид эллипса (рис. 8.3, 6, г, е).  [c.185]

Такое представление противоречит всем экспериментальным фактам, связанным с волновыми свойствами электромагнитного излучения. Например, любой луч, связанный с электромагнитной волной, может рассматриваться как возможная траектория фотона, а фотон представляется как объект, движущийся одновременно по всем лучам. Представление о пребывании фотона в какой-то пространственной точке лишено смысла еще и потому, что он не может находиться в покое и движется со скоростью света.  [c.37]

Как мы уже сказали, реальные свойства электрона (а также любой другой элементарной частицы) не соответствуют ни свойствам частицы классической механики, ни свойствам волны. Пользуясь представлением о частицах, Е том виде как его дает классическая механика, нельзя объяснить явление дифракции. Предположим, что наблюдается дифракция от двух щелей. Опыт показывает, что она возникает лишь в тех случаях, когда обе щели открыты одновременно. В случае, например, дифракции света свет должен одновременно проходить через обе щели. Если попеременно пропускать свет то через одну, то через другую щель, то на экране, расположенном за щелями, не возникнет дифракционной картины. Суммарное распределение света в этом случае будет соответствовать простому сложению освещенностей, возникающих при прохождении света через каждую из щелей в отдельности. Следовательно, в случае волны получается существенно различное действие, в зависимости от того, проходит ли волна одновременно через обе щели или попеременно то через одну, то через другую щель. В случае же потока частиц их распределение за щелями должно получиться одним и Tf M же независимо от того, будут ли щели открыты одновременно или поочередно. Каждая из частиц пролетает лишь через одну щель, и ее движение не может зависеть от того, открыта ли в это время вторая щель или нет. Таким образом, самое представление о частице, движущейся по определенной траектории, не позволяет объяснить явление дифракции.  [c.89]

Выбор между корпускулярной теорией и волновой теорией света не может быть сделан на основании изучения одних только траекторий световых лучей. Законы отражения и преломления могут быть получены и из чисто механических соображений. Однако в корпускулярной теории закон преломления получается в виде  [c.313]

В более обш,их случаях —таких, как движение электрона в магнитном поле, неконсервативные системы, релятивистская механика, распространение света в кристаллах — уже нет пропорциональности элемента ds внутренней геометрии и обычного элемента rfs. Ортогональность траекторий и волновых поверхностей сохраняется поэтому лишь в особом внутреннем смысле.  [c.328]

С ТОЙ же самой ситуацией, которая существует в оптике при изучении распространения света в оптически однородной среде. Оптические лучи являются прямыми линиями, т. е. кратчайшими линиями. Элементарные волны в построении Гюйгенса представляют собой сферы, причем не только в бесконечно малых, но п в конечных областях. Огибающие этих сфер, т. е. волновые поверхности, являются параллельными поверхностями, а оптические лучи—либо траектории механической системы — ортогональными траекториями для этого семейства параллельных поверхностей. Все это остается справедливым для произвольных оптических или механических систем при условии, что мы оперируем соответствующим образом определенным метрическим пространством.  [c.329]

Якоби дал также новую формулировку принципа наименьшего действия для случая независимости от времени, который рассматривали Эйлер и Лагранж. Он критиковал их формулировку на том основании, что область интегрирования у них не удовлетворяет условию варьирования при фиксированных граничных значениях. Хотя в действительности Эйлер и Лагранж применяли свой принцип вполне корректно, исключение времени из вариационного интеграла, произведенное Якоби, привело к новому принципу, определяющему траекторию движущейся точки без всякого указания на то, как движение происходит во времени. Сходство этого принципа с принципом Ферма о наименьшем времени распространения света, из которого может быть определена траектория светового луча, непосредственно устанавливало аналогию между оптическими и механическими явлениями.  [c.392]


Пример 4. Пусть О, О будут некоторые точки, а F, — главные фокусы оптической системы, симметричной относительно оси. Частица света входит в систему параллельно оси и на коротком расстоянии от нее выход т через F. Рассматривая незначительное возмущение прямолинейной траектории ОО, мы можем написать  [c.282]

Корпускулярная теория света встречается в данном случае с большими трудностями. Уже со времен Ньютона известно, что проходящие вблизи края экрана световые лучи не остаются прямолинейными и что некоторые из них проникают в область геометрической тени. Ньютон приписывал это отклонение влиянию некоторых сил, которые якобы действуют со стороны края экрана на световые корпускулы. Мне кажется, что это явление заслуживает, очевидно, более общего объяснения. Так как, по-видимому, между движением тел и распространением волн существует глубокая связь и так как лучи фазовых волн могут теперь рассматриваться как траектории (возможные траектории) квантов энергии, мы склонны отказаться от принципа инерции и утверждаем Движущееся тело всегда должно следовать за лучом своей фазовой волны. При распространении волны форма поверхностей равной фазы будет непрерывно изменяться, и тело всегда будет двигаться, согласно нашему утверждению, по общему перпендикуляру двух бесконечно близких поверхностей.  [c.636]

Опыт показывает, говорит Гамильтон, что во всех случаях, когда мы имеем дело с распространением света в каких-либо средах при самых разнообразных условиях, траектория луча оказывается подчиненной одному основному соотношению. Это соотношение гласит, что путь распространения света от одной точки к другой всегда оказывается таким, что если его сравнить с другими бесконечно близкими линиями, при помощи которых могут быть соединены эти точки в мысли и в геометрии, то некоторый интеграл, или сумма, называемый часто действие и зависящий по определенным правилам от длины и положения траектории и среды, в которой распространяется свет, меньше всех подобных интегралов для других соседних линий ).  [c.809]

Если свет проходит через среду, оптическая плотность которой непрерывно изменяется (например земная атмосфера), то траектория луча будет кривой линией. Для определения этой линии надо, согласно правилам вариационного исчисления, исследовать вариацию интеграла V с15, где V — преломляющая сила среды, а 5 — элемент траектории пределы интегрирования фиксированы. Имеем  [c.811]

Поляризованный свет моя но представить как возмущения, при которых частицы совершают поперечные колебания по определенным траекториям в плоскости, перпендикулярной направлению распространения света. Когда эта траектория представляет собой прямую линию, перпендикулярную направлению распространения, то свет называют плоскополяризованным. Если траектория представляет собой окружность, то свет называют поляризованным по кругу. Если частицы движутся по эллиптическим траекториям, то свет называют эллиптически поляризованным. В следующей главе свойства поляризованного света рассматриваются подробнее. Схемы на фиг. 1.9 иллюстрируют поляризованный свет трех видов.  [c.25]

После просвечивания в поляризованном свете на модель наносили хрупкое покрытие. После высыхания покрытия модель нагружали на том же приспособлении, что и при исследовании поляризационно-оптическим методом. В покрытии возникали трещины, идущие перпендикулярно главным напряжениям Oj. Так как направления главных напряжений ортогональны, то эти трещины представляли собой траектории главного напряжения Oj. Картины трещин в хрупком покрытии для 4 моделей показаны на фиг. 9.30 и для пятой модели — на фиг. 9.43.  [c.259]

У источников света интенсивность излучения должна быть порядка 1,5 кЕт/м , они должны перемещаться соответственно траектории движения солнца.  [c.512]

Среди различных способов отклонения лазерного луча ведущее место принадлежит электрооптическому методу, позволяющему получать большие скорости отклонения и высокую разрешающую способность. Суть электрооптического метода отклонения лазерного луча состоит в следующем приложенное к кристаллу электрическое поле вызывает изменение показателя преломления в направлении, перпендикулярном направлению распространения пучка света, проходящего через кристалл, что вызывает искривление траектории светового пучка. Угол отклонения может быть вычислен по формуле  [c.85]

Пример. Чистое кручение вала. Производится просвечивание продольного или поперечного сечении. При просвечивании попе-речного сечення (фотографирование вдоль оси вала) картина полос интерференции рассеянного света дает траектории касательных напряжений X в сечении (фиг. 22, а) расстояния d между полосами по перпендикуляру к ним обратно пропорциональны  [c.594]

Ратовесное распределение мод (РРМ) является важной концепцией в волоконной оптике. Несмотря на то, что свет в волокне переносится больпшм количеством мод, не все они переносят одинаковое количество энергии. Эффективность различных мод различна. В некоторых модах свет вообще не переносится. Более того, энергия может переходить из одной моды в другую траектории света могут меняться.  [c.71]

Вернемся к диаграмме Минковского (рис. 414) и дадим еще один вывод формулы (21), выражающей эффект замедления хода движущихся часов. Пусть наблюдатель В, движущийся со скоростью и < с в системе Охх, и наблюдатель А, покоящийся в тон же системе, находятся в начальный момент в одной и той же точке О х =. г = 0) пространства, где они синхронизируют свои часы, поставив их так, что т = т = 0. Покоящийся в ис-ходно11 системе Охт наблюдатель А в момент т = 6о по своим часам (точка No) посылает световой сигнал, который принимается наблюдателем В в момент, когда его часы показывают время т = 01 =/гбо (точка yVi). Траекторией светового луча служит прямая NqN, параллельная диагонали ОС. Сразу же по получении сигнала наблюдатель В посылает ответный сигнал (с траекторией N]N2 — прямой, перпендикулярной к диагонали ОС), который принимается покоящимся наблюдателем в момент, когда его собственные часы показывают т = 02 = kQ (точка N2). Совпадение коэффициентов пропорциональности в двух последних равенствах выражает как раз принцип относительности, т. е. совпадение законов распространения света во всех ииерциальных системах отсчета. Итак, 02 = fe9l = fe 6o.  [c.457]


Для получения данных о скоростях и траекториях движения частиц наиболее часто используют бесконтактные методы измерений, среди которых широкое распространение получили скоростная киносъемка и фоторегистрация потока. Фоторегистрация и киносъемка в настоящее время используются и для исследования внутренних характеристик процессов конденсации и кипения. Так траектория и скорость частиц могут быть определены фоторегистрацией путем экспонирования пленки двумя последовательным импульсами света различной длительности. В результате такога экспонирования изображение дисперсного компонента на пленке-фиксируется в виде парных штрихов, имеющих различную протяженность. Зная масштаб съемки и продолжительность импульсов света, по фотограммам потока легко определить траектории частиц, и их скорость. Этот метод применяют в потоках с невысокой концентрацией дисперсного компонента (ф<0,05), когда возможны. наблюдение и регистрация на пленке отдельных частиц.  [c.248]

Метод Делоне проливает новый свет на понятие вырожденные системы старой квантовой теории. Если траектории полностью заполняют разрешенную область пространства конфигураций, то система не вырождена и разделение переменных возможно только в координатах одного вида.  [c.288]

Эта теорема имеет следующий смысл. Представим себе семейство механических траекторий, каждая из которых соответствует одной и той же полной энергии Е и все они начинаются на некоторой заданной поверхности 5 = 0. Для этих траекторий можно найти бесконечное семейство поверхностей S = onst, к которым траектории будут перпендикулярны. Мы говорим, что механические траектории обладают свойством лучей , потому что они ведут себя точно так же, как лучи света в оптике. Световые лучи характеризуются тем, что они везде перпендикулярны волновым поверхностям (фронту волны). То же самое справедливо для механических траекторий консервативной системы их можно рассматривать как ортогональные траектории семейства поверхностей S= onst.  [c.305]

На рис. 21 изображен луч света, идущий вдоль ортогональной траектории Т, которая начинается в точке М на волновой поверхности ф = О и заканчивается в точке N на поверхности ф = пе. Вместе с ним рассмотрим другой луч С, с теми же самыми конечными точками М и N, который не является ортогональной траекторией.Из геометрического построения поверхностей ф= onst следует, что путь от М до tV вдоль ортогональной траектории Т займет время  [c.309]

Резюме. Задачи динамики могут быть целиком сформулированы в геометрических образах. Для этого каждой заданной механической задаче нужно поставить в соответствие нужную форму метрической геометрии. В общем случае такая геометрия будет нери-манова типа. Пространство конфигураций при этом включает в себя время наравне с другими переменными. Механические траектории являются кратчайшими, т. е. геодезическими, линиями этого многообразия, а волновые поверхности превращаются в параллельные поверхности. Геодезические линии могут быть получены как ортогональные траектории волновых поверхностей. Механическая задача соответствует задаче о распространении света в оптически однородной среде.  [c.330]

В виде частного приложения мы можем представить себе световые лучи в оптически изотропной, но неоднородной среде с коэффициентом преломления п(х,у,г), меняющимся от точки к точке. Как мы уже видели в п. 18, световые лучи тождественны с геодезическими линиями метрического многообразия, имеющего линейным элементом ds = nds, где ds есть обыкновенный линейный элемент физического (евклидова) пространства. Так как элемент ds отличается только позиционным множителем п от евклидова элемента ds, то обобщенные количества движения р траекторий будут также отличаться только на локальный множитель от направляющих косинусов соответствующей касательной, так что введенное выше условие ортогональности (58) приобретает в этом случае обычный смысл, который оно имеет в элементарной метрике. С другой стороны, как было отмечено в п. 18, п ds есть не что иное, как элемент времени dt, которое требуется свету, чтобы пройти элемент пути ds следовательно, действие сводится к времени распространения света. Таким образом, мы на основании теоремы Бедьтрами — Липшица заключаем, что световые лучи, которые в заданный момент выходят из заданной поверхности oq в направлении, ортогональном к Oq, или, в частности, из единственного центра, остаются всегда ортогональными к поверхности /= onst, каков бы ни был показатель преломления п, т. е. какова бы ни была неоднородность среды. Эти поверхности, представляющие собой геометрические места точек, к которым свет приходит за один и тот же промежуток времени, образуют так называемые волновые поверхности (см. гл. X, упражнение 13).  [c.451]

Волновая теория делает теорему Малюса очевидной, ибо любое семейство волновых поверхностей имеет ортогональные траектории, которые и являются лучами. Это означает, что теорема Малюса заключена в скрытом виде в волновой теории света. Гамильтон залгечает по этому поводу ... более всего удивительно, что важная и оспаривавшаяся теорема была открыта и как нечто обыкновенное употреблялась Гюйгенсом более чем сто лет назад и затем была так полно забыта ).  [c.806]

Задачи динамики могут быть формулированы языком высшей геометрии, если связать каждую динамическую проблему с соответствующей формой метрической геометрии. В общем случае — это нериманова геометрия, причем конфигурационное пространство включает время в качестве координаты, равноправной с другими переменными. Тогда траектории механического движения тел будут представлены кратчайшими или геодезическими линиями такого метрического многообразия, в то время как волновые поверхности (или поверхности действия) становятся параллельными поверхностями. Геодезические же линии могут быть построены как ортогональные траектории к этим поверхностям. Тогда динамические процессы движения корпускулярных систем совпадают с задачей распространения света в оптически неоднородной среде.  [c.869]

В практике исследования характеристик роботов в ГДР, в Дрезденском техническом университете, получили применение фотограммометрические методы. У. Монцовский [90] определял этими методами зону обслуживания, траектории движения, длины перемещений, деформаций, скорости и ускорения. При фотограммометрическом способе на захвате располагается импульсный источник света, соединенный с источником питания и устройством для изменения частоты импульсов, а изображение, проектируемо на темный экран, фотографируется специальной или универсальной фотокамерой. Изображение на фотопластинке после однократ-  [c.81]

Сложение двух взаимно перпендикулярных колебаний с амплитудамилго = Досоза и у= ао31Па и с разностью фаз 8 света, вышедшего из кристаллической пластинки, даёт эллиптически поляризованный свет траектория конца результирующего вектора является эллипсом  [c.253]

Угол 1рот (или 90 —<р ,) равен углу между направлением плоскости поляризации света, поступающего от поляризатора установки, и осью X. Поле изоклин определяет направление главных напряжений во всех точках модели и используется для вычерчивания траекторий главных напряжений (изостат) и при компенсации по точкам при измерении Я —за-  [c.267]



Смотреть страницы где упоминается термин Траектория света : [c.808]    [c.377]    [c.773]    [c.276]    [c.359]    [c.420]    [c.183]    [c.157]    [c.185]    [c.505]    [c.239]    [c.412]    [c.208]    [c.303]    [c.378]    [c.82]    [c.533]   
Космическая техника (1964) -- [ c.276 ]



ПОИСК



Траектория

Траектория е-траектория



© 2025 Mash-xxl.info Реклама на сайте