Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

К шевронное

К шевронным колесам приложимы все выше выведенные для косозубых колес соотношения. Обычно угол р = 25-н40°.  [c.95]

Число зубьев г всегда указывают на полной окружности, незави симо от того, что изображено колесо или сектор. Угол наклона зубьев Ра косозубых и шевронных колес определяется в касательной плоскости к делительному цилиндру. Направление наклона зубьев указывается надписью Правое , Левое или Шевронное .  [c.129]


При скоростях до 20 м/с прямозубых колес и до 45 м/с косозубых и шевронных рекомендуется подавать масло через один ряд отверстий со стороны входа зубьев в зацепление, а при больших скоростях выполняется два ряда отверстий, и масло подается отдельно на шестерню и колесо перед местом зацепления (рис. 6.33, в). В реверсивных передачах масло к месту зацепления подводится с двух сторон (рис. 6.33, а).  [c.145]

Рис. 9.7. График для определения коэффициента К на. для косозубых и шевронных передач Рис. 9.7. График для <a href="/info/2768">определения коэффициента</a> К на. для косозубых и шевронных передач
Коэффициенты К на и Кга учитывают неравномерность распределения нагрузки между зубьями соответственно при расчете на контактную и изгибную усталость. Для прямозубой передачи Кна=Кра=Ь Для косозубой И шевронной Ка зависит от степени точности и окружной скорости передачи при о 15 м/с и 6...8-й степени точности Кна=К02...1,12 Кра=0,72...0,91.  [c.355]

Для зубчатых колес с т 1 установлены различные требования к косозубым и шевронным колесам с коэффициентами осевого перекрытия нр не менее указанных в табл. 31. с одной стороны, и к прямозубым  [c.659]

Схема зацепления пары сопряженных колес представлена на рис. 10.20. Угол между линией зацепления и перпендикуляром к линии, соединяющей центры колес, называется углом зацепления. В любом сечении колес, перпендикулярном осям, закономерности зацепления эвольвентных профилей одинаковы и, следовательно, обеспечивается условие постоянства передаточного отношения в каждом сечении. В косозубом, шевронном и криволинейном зацеплении  [c.109]

Основные виды зубчатых передач (рис. 7.1) с параллельными осями а — цилиндрическая прямозубая, 6 — цилиндрическая косозубая, в—шевронная, г — с внутренним зацеплением с пересекающимися осями д — коническая прямозубая, е—коническая с тангенциальными зубьями, ж — коническая с криволинейными зубьями со скрещивающимися осями 3 — гипоидная, и — винтовая к- — зубчато-ре-ечная прямозубая (гипоидная и винтовая передачи относятся к категории гиперболоидных передач, что будет пояснено далее).  [c.106]

Наименьший удельный расход и наибольший адиабатный к. п. д. имеют шестеренные пневмодвигатели с шевронными зубчатыми роторами. Адиабатный к. п. д., которым учитываются все потери в пневмодвигателе, зависит от типа и размера пневмодвигателя, а также от частоты вращения. Последнее хорошо видно на характеристике пневмодвигателя (рис. 15.4), представляющей собой графическую зависимость между его основными техниче-  [c.256]


Рис. 174. Значения адиабатного к. п.д. пневмодвигателей в зависимости от скорости вращения 1 2 — поршневого мощностью 3,7 и 7,4 кет соответственно . 3 — шестеренного прямозубого 4 — то же, косозубого 5 — то же, шевронного б — пластинчатого 7, 8 — турбинного мощностью 0,44 и 13,6 кет Рис. 174. Значения адиабатного к. п.д. пневмодвигателей в зависимости от <a href="/info/108847">скорости вращения</a> 1 2 — <a href="/info/319902">поршневого мощностью</a> 3,7 и 7,4 кет соответственно . 3 — шестеренного прямозубого 4 — то же, косозубого 5 — то же, шевронного б — пластинчатого 7, 8 — турбинного мощностью 0,44 и 13,6 кет
В обозначение двигателей входят буквы П—поршневые, Ш—шестеренные С шевронными зубчатыми роторами, К—шестеренные с косозубыми зубчатыми роторами, цифры после букв—величина рабочего объема в кубических дециметрах.  [c.291]

Зуб прямозубого колеса входит в зацепление сразу по всей длине. Неточности изготовления, например ошибка в шаге, приводят к появлению толчков при входе зуба в зацепление, интенсивность которых тем больше, чем выше скорость. Плавность передачи снижается, шум возрастает. Во избежание этого применяют косозубые и шевронные цилиндрические колеса. В этих колесах зубья входят в зацепление постепенно — от одного конца зуба к другому. При окружных скоростях у ]> 6 м/с рекомендуется применять косозубые (или шевронные) колеса, так как прямозубые при таких скоростях работают удовлетворительно лишь при высокой точности их изготовления.  [c.218]

Нарезание косозубых и шевронных колес может производиться прямозубой рейкой, как и при изготовлении прямозубых колес наклон зуба получают соответствующим поворотом инструмента относительно заготовки на угол р. При этом профиль косого зуба в нормальном к его оси сечении будет таким же, как и в прямозубом колесе.  [c.332]

По расположению зубьев па поверхности колес различают передачи (рис. 9.1) прямозубые (а, г, д), к о с о 3 у б ы е (б), шевронные (в) и с круговым зубом (е).  [c.151]

Нарезание косозубых и шевронных колес, так же как и прямозубых, производится стандартным режущим инструментом. Если используется реечный инструмент, то может применяться или косозубая рейка, обкатывающая в процессе нарезания заготовку в плоскости вращения колеса, или прямозубая рейка, расположенная наклонно к торцовой плоскости заготовки. На рис. 9.14 представлено сечение косозубой рейки, проходящее через модульную прямую перпендикулярно торцовой плоскости. В этом сечении Р — угол наклона зуба рейки. Поскольку линейная скорость заготовки на делительной окружности равна поступательной скорости рейки,  [c.247]

Некоторые особенности передач с косозубыми цилиндрическими колесами. Косозубые цилиндрические колеса отличаются от прямозубых тем, что направление к их продольной винтовой оси симметрии составляет с направлением образующей цилиндра угол Р (рис. 16.5, а). Передачи, состоящие из косозубых колес, отличаются большей плавностью движения и издают меньший шум, чем передачи с прямозубыми колесами. Недостатком их является возникновение осевых усилий. Этот недостаток устраняется применением шевронных зубчатых колес с противополож-  [c.305]

Конструкция подшипниковых узлов должна обеспечивать 1) возможность теплового расширения (удлинения) вала без нарушения нормальной работы подшипников, т. е. без нагружения их дополнительными осевыми нагрузками 2) фиксацию положения вала в осевом направлении, за исключением передач с шевронными и раздвоенными (с противоположным направлением наклона зубьев) колесами 3) необходимые условия для работы подшипника, т. е. смазку и предохранение от пыли и грязи 4) удобство монтажа и демонтажа подшипников. Кроме того, все детали узла должны обладать достаточной прочностью и жесткостью. Деформации валов или стенок корпуса узла, в том числе и незначительные, нередко приводят к нарушению нормальной работы подшипника. Поэтому при конструировании подшипниковых узлов следует добиваться возможно меньших расстояний между опорами.  [c.425]

Подготовка образцов к испытаниям заключается в нанесении на боковые грани покрытий, шлифовании этих поверхностей, нанесении концентраторов напряжений и наведении усталостных трещин. Для облегчения контроля длины усталостной трещины при ее выращивании боковые поверхности образцов целесообразно отполировать. В качестве концентраторов напряжений для образцов толщиной более 25 мм рекомендуется [228] применять надрезы Шевронной  [c.140]


Отмстим, что данная ip ктурная запись ависимости величины контактного упрочнения прямолинейной мягкой прослойки А (к , Гц) полностью соответствует соотношению (3 39). полученному л я оценки (ф, к) шевронных и наклонных прослоек (нагружаемых по жесткой схеме")- Действительно для расс.матриваемых прослоек к, (0,5) = 1 + / ср,  [c.143]

Косозубые (и шевронные) цилиндрические колеса, изготовленные методом обкатки, имеют теоретически правильный эвольвент-пый профиль зуба только в плоскости обкатки, т. е. в торцовом ссчеппи. В нормальном сечении про([)нль несколько отличается от эвольвентного. Однако в большинстве расчетов этим отклонением пренебрегают, считая, что нормальный профиль зуба прямозубого колеса соответствует эвольвентному профилю некоторого условного (эквивалентного) прямозубого колеса. Радиус делительной окружности эквивалентного колеса принимают равным наибольшему радиусу кривизны эллипса, образуюгцегося в результате сечения делительного цилиндра косозубого колеса плоскостью NN, нормальной к винтовой линии на делительном цилиндре (рис. 190).  [c.284]

Разгрузку налов и подшипников применением многопоточности, замыкание осевых сил в шевронных передачах и раздвоенных зубчатых передачах с противоположным направлением углов наклона зубьев, при возможности направление силовых факторов навстречу один другому, проектирование дегалей способных к восприятию нагрузок нескольких видов вмест(3 введения отдельных деталей, разгрузка передач трения, работающих в переменном режиме, введением механизма еамозатягивания, обеспечивающего уменьшение сил прижатия с уменьшением полезной нагрузки.  [c.482]

Исследования показали, что по химическому составу металл отливки корпуса задвижки соответствовал стали А-352 1СВ по АЗТМ и в зоне разрушения находился в охрупченном состоянии ударная вязкость КСУ 4д при пониженной температуре составляла 12 Дж/см , относительное удлинение 8 — 23,8%. Металл имел ферритно-перлитную структуру с крупными равноосными зернами и включениями карбидов внутри зерен феррита. Охрупчивание металла отливки в зоне разрушения было вызвано наличием усадочных межкристаллитных несплошностей и проявлением водородной хрупкости. По значениям прочности, твердости и относительного сужения металл отвечал требованиям нормативных документов к отливкам, предназначенным для эксплуатации в средах с высоким содержанием сероводорода. Разрушение стенки корпуса задвижки произошло в результате быстрого развития трещин, образовавшихся в металле под воздействием напряжений, превышающих предел текучести, в зоне расположения усадочных несплошностей. Наличие высоких напряжений в металле в момент, предшествовавший разрушению, подтверждалось тем, что в зоне зарождения и нестабильного роста трещин преобладал вязкий характер разрушения. Характер излома корпуса задвижки в зонах зарождения и докритического роста трещины смешанный, а в зоне лавинообразного разрушения — хрупкий с шевронным узором. Охрупчивание металла, вызванное его пониженной ударной вязкостью, способствовало лавинообразному развитию разрушения. На гболее вероятной причиной разрушения задвижки явилось, по-видимому, размораживание ее корпуса.  [c.52]

При пересекающихся осях вращения звеньев, вращающихся с постоянным передаточным отношением, в качестве сопряженных поверхностей выбирают конические эвольвентные поверхности. Они образуются линиями, расположенными на производящей плоскости Q (рис. 12.2, а), перекатывающейся без скольжения по основному конусу. Прямая М — М, проходящая через вершину основного конуса, описывает теоретическую поверхность прямого конического зуба (рис. 12.2, б), прямая Л1р — УИр, не проходящая через вершину конуса, описывает теоретическую поверхность косого (рис. 12.2, в), ломаная линия Л1рЛ1рЛ1р — шевронного (рис. 12.2, г), кривая — Мц — теоретическую поверхность криволинейных конических зубьев (рис. 12.2, б). Линия В — В касания производящей плоскости с основным конусом является мгновенной осью вращения этой плоскости относительно основного конуса и осью кривизны производимой поверхности. Плоскость Q нормальна к этой поверхности. Точки линий Л4 — М, УИр — УИр п УИ — описывают сферические эвольвенты. Если обкатать производящую, плоскость вокруг всей поверхности основного конуса, то сферическая эвольвентная поверхность будет состоять из зубцов , симметричных плоскости М, перпендикулярной его оси (рис. 12.3). Кривизна эвольвентной конической поверхности при пересечении С этой плоскостью меняет знак, т. е. поверхность имеет перегиб  [c.130]

Угол наклона контактных границ также вносит коррективы в картину деформирования соединений. При определенных углах наклона ср и в зависимости от схемы нагружения соединений диапазоны относительных толщин аг, в которых реализуется равнопрочность соединения с основным металлом, могут отсутствовать. Последнее касается X-, V-образных прослоек и косых прослоек, деформируемых по мягкой схеме. Для соединений с шевронными и косыми прослойками ( жесткая схема) общая картина работы соединений сохраняется независимо от угла ф, который в данном случае с увеличением своих значений приводит к рост эффекта контактного упрочнения, На рис. 1.9, б представлены графики зависимости значений ж = Жр от угла скоса кромок ф для рассматриваемых прослоек при различной степени механической неоднородностиК [1 — = 1,25, 2 — = 1,5, 3 — К = = 2,0. Здесь значение ф = О соответствует сварным соединениям с прямоугольной прослойкой, с увеличением угла наклона прослойки ф диапазон ае < aSp, в котором достигается равнопрочность сварного соединения основному металлу для шевронных и косых ( жесткая схема) прослоек, расширяется (кривые ). В то же время для Х-, V-образных прослоек (Kj)HBbie II )и косых ( мягкая схема) прослоек (кривые III) такой диапазон имеет тенденщпо к сужению.  [c.25]


Отметим, что приведенной структурной записи (Гц, ) не отвечают соотношения, полу ченные для оценки (ф, к) соединений с X- и F-образными мягкими прослойками. Последнее связано с тем, что данная структурная запись вытекает из решения, полу-ченного для прямолинейных мягких прослоек, базирлтощегося на представлении сеток линий скольжения в виде отрезков циклоид с постоянным радиу сом производящего круга (данное условие соблюдалось при анализе наклонных и шевронных прослоек). Как было показано ранее, аппроксимация сеток линий скольжения вХ-к F-образных прослойках осуществлялась отрезками циклоид с переменным по дайне прослоек радиусом производящего круга Гц (0,5) = Гц (х). Данное противоречие легко устраняется введением понятия условного среднего (интегрального) радиу са циклоид, позволяющего воспользоваться для оценки К . рассматриваемых соединений общей структурной записью расчетных методик в виде (3.44). Величина условного среднего радиуса отрезков циклоид, аппроксими-р ющих сетки линий скольжения в прослойках обеих геометрических форм (рис. 2.7,б,в), может быть определена из условия обеспечения равенства расчетных значений величин контактного упрочнения рассматриваемых прослоек, подсчитанных по обоим вариантам расчета (по  [c.144]

Отмегим, что для толстостенных оболочковых конструкций, выполняемых из высокопрочных сталей и сплавов, технология сварки которых предопределяет использование мягких проволок, предпочтительны-л и (1)ормами разделки кромок являются наклонная щелевая и прямая щелевая. При сварке толстостенных оболочек из нагартованных или термоупрочненных материалов, для которых характерно разупрочнение в зоне термовлияния и образование мягких прослоек, наиболее оптимальными являются А"- и К-образные и наклонная щелевая разделки кромок. Последнее связано с тем, что разупрочненные участки в зоне термовлияния приобретают форму шевронных или наклонных прослоек, обеспечивающую в процессе нафужения конструкций наиболее зна-  [c.260]

Весьма важным эксилуатационньш показателем пневмодвигателя является значение пускового момента, т. е. момента, который он развивает при я = 0. Особенно большой пусковой момент необходим забойным, проходческим и транспортным машинам, где часто пуск осуществляется под нагрузкой. Наибольшие пусковые моменты имеют поршневые, пластинчатые и шевронные шестеренные двигатели, у которых пусковой момент может достигать тах (1,5 4-2,0) Мдпт В этсм отношении их характеристика соответствует требованиям, предъявляемым к машинам с тяжелым режимом пуска. Прямозубые и косозубые шестеренные двигатели  [c.257]

У косозубых (рис. 20.14, а) и шевронных (рис. 20.14,6) колес зубья наклонены под некоторым уголом р к образующей делительного цилиндра, но оси колес являются при этом параллельными.  [c.332]

Коэффициенты К Кр учитывают не-равломерность распределения нагрузки между зубьями. Для прямозубых колес К = = Кр . Для косозубых и шевронных колес зависят от окружной скорости колес и степени точности при у Юм/с и 6...8-й степени точности  [c.193]

Одиоступепчатые цилиндрические ре-дукторы (Ц). Компоновочные возможности их весьма ограничены и сводятся в основном к расположению осей валов в пространстве. Зацепление в большинстве случаев косозубое, редко — прямозубое и шевронное. Передаточное число и < 6,3. На  [c.262]

Как мы видели, в цилиндрических косозубых передачах и в конических передачах даже при прямых зубьях в зацеплении возникает осевая составляющая Ра силы давления. Чтобы избежать чрезмерной осевой нагрузки на подшипники, угол наклона зуба Р в косозубых цилиндрических колесах обычно выбирают не более 15" . В шевронных колесах осевые нагрузки па оба нолушевропа уравновешиваются и поэтому осевая нагрузка на подшипники в этом случае не действует. Однако при неправильной конструкции опор этого уравновешивания может и не произойти. Действительно, в шевронных передачах относительное осевое смещение зацепляющихся колес невозможно, так как этому препятствуют зубья соседнего колеса. Поэтому, чтобы избежать статической неопределимости по отношению к осевой силе, вал одного из колес передачи не должен быть закреплен в осевом направлении. Тогда колесо 2 будет удерживать колесо 1 своими зубьями, как это видно на рис. 9.22, б. В косозубых передачах (рис. 9.22, а) косые зубья не препятствуют относительному осевому смещению колес, так как при таком сме-  [c.254]

Вследствие того, что в косозубых колесах нормальная реакция Рп зубьев направлена наклонно к оси колеса (рис. 239), возникает осевое усилие Ро на валу колеса. Это осевое усилие вызывает необходимость установки упорного осевого подшипника, что влечет за собой увеличение потерь на трение. Для уравновешивания осевых усилий применяют колеса с угловыми зубьями — шевронные или елочные (рис. 69 л 70). Шевронные колеса состоят как бы из двух колес с косыми зубьями, симметрично расположёнными относительно средней плоскости (рис. 240). Зацепле-  [c.224]

Косые и шевронные зубья Прочнее прямых в результате увеличения длины контактной линии и ее наклона к основанию зуба, что учитывается коэффициентом наклона зуба и утолщению зуба в опасном сечении, что учитывается юменением коэффициента формы зуба. В результате для косозубых передач  [c.265]


Смотреть страницы где упоминается термин К шевронное : [c.577]    [c.401]    [c.253]    [c.15]    [c.304]    [c.31]    [c.38]    [c.98]    [c.101]    [c.78]    [c.192]    [c.137]    [c.140]    [c.257]    [c.273]    [c.324]    [c.642]   
Планетарные передачи (1977) -- [ c.46 , c.162 , c.164 , c.257 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте