Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформация твердых тел разрушения

Деформация твердых тел разрушения 18  [c.491]

Первая попытка аналитического подхода к исследованию вопросов сопротивления твердых тел разрушению (случай изгиба консольной балки) принадлежит Галилею (1638). Предполагая тела абсолютно твердыми, он, естественно, не установил, что их прочность определяется деформацией и поэтому не смог дать исчерпывающего решения задачи. Однако уже сама ее постановка представляла положи-  [c.7]

В зависимости от строения молекул они могут иметь различную ориентацию у поверхности (не обязательно быть нормально расположенными к поверхности) [7]. Эти явления оказывают воздействие на поведение твердых тел. Так поверхностно-активная среда влияет на процессы разрушения и деформации твердых тел. Адсорбционные пленки приводят к эффекту пластификации, т. е. облегчают пластическое течение в зернах, расположенных в поверхностном слое, так как адсорбированный слой понижает поверхностное натяжение металла.  [c.79]


Начало XX в. ознаменовалось изучением поведения материалов при высоких давлениях. Карман был одним из первых, кто исследовал деформацию твердых тел (мрамор и песчаник) при гидростатическом сжатии. Он использовал для этой цели аппарат, в котором с помощью глицерина создавалось высокое внешнее давление на образец, помещенный в цилиндр. В этих опытах Карману удалось реализовать как хрупкое разрушение (при малых деформациях), так и пластическую нестабильность, приводящую к большим деформациям.  [c.132]

В то время как в первом издании рассматривались лишь пластические деформации твердых тел, в настоящем издании автор пытается расширить рамки книги, давая общий обзор условий, вызывающих разрушение в материалах, и знакомя читателей с некоторыми подробностями и результатами ряда последних ценных экспериментальных исследований по текучести и разрушению пластичных металлов, находящихся в условиях сложного напряженного состояния.  [c.5]

Высокоэластические деформации резин характеризуются большей величиной по сравнению с упругими деформациями твердых тел при относительно малом сопротивлении деформированию. Так, при одной и той же малой деформации растяжения напряжение в металлах на 4—5 порядков выше, чем в резине. Резины способны растягиваться без разрушения до нескольких сот процентов, причем их удлинение при разрыве на 2—3 порядка выше, а сопротивление разрыву в 5—30 раз ниже, чем у стали. Как упругие, так и высокоэластические деформации обратимы. Качественное различие упругих и высокоэластических материалов связано с молекулярной структурой и механизмом их деформирования [2, 3].  [c.5]

Механическое разрушение, т. е. конечная стадия, завершающая процесс упругой или пластической деформации твердого тела. Сюда относятся поломка вала машины, разрыв троса, растрескивание напряженного элемента фермы. Такое разрушение выводит из строя ценную конструкцию, но чаще всего позволяет регенерировать сам конструкционный материал например, сталь сломанного вала может быть снова переплавлена в мартеновской печи.  [c.7]

Напомним, что здесь, как и всюду в теоретической механике, под твердым телом мы понимаем абсолютно твердое тело. Совершенно ясно, что две такие силы, приложенные к какому-либо реальному физическому телу, могут вызвать деформацию и даже разрушение тела. Лишь на абсолютно твердое тело такие взаимно уравновешенные силы никакого действия оказать не могут. Поэтому рассмотренную аксиому следует называть аксиомой об абсолютно твердом теле.  [c.21]


Особенности деформации и разрушения твердых тел на различных масштабных уровнях  [c.241]

При таком подходе к понятию времени облегчается решение многих эволюционных задач. Мы используем эти представления для того, чтобы установить параметры порядка, контролирующие эволюцию структуры при деформации и разрушении твердых тел на различных масштабных уровнях. В литературе длительное время обсуждался (и еще продолжает обсуждаться) вопрос, что первично - пластическая деформация или разрушение Дискуссия но этому вопросу возникла после того, как в 1935 г. А.В. Степанов [20] высказал идею о том, что любое разрушение связано с пластической деформацией.  [c.260]

Однако здесь величина о - эффективная поверхностная энергия, представляющая собой удельную (на единицу вновь образующейся поверхности) работу разрушения. Она включает, помимо истинной поверхностной энергии сг, работу пластических деформаций на единицу поверхности трещины, т е. энергию искажений решетки, возникающих при развитии трещины. Величина сг может на несколько порядков превосходить истинное значение поверхностной энергии идеально хрупкого твердого тела.  [c.128]

Трение друг о друга двух соприкасающихся твердых тел представляет собой сложное физическое явление, сопровождаемое нагревом трущихся тел, их электризацией, разрушением поверхностей, диффузией вещества и т. д. Явление трения можно себе представить как вдавливание, сопровождающееся сцеплением, бугорков шероховатости (иногда волнистости) поверхности одного нз тел в промежутки между бугорками другого, вызывающее при взаимном движении тел деформацию, а иногда и разрушение этих бугорков. Интенсивность такого рода взаимодействия трущихся поверхностей зависит от многих обстоятельств, среди которых наибольшее значение имеют интенсивность сдавливания тел, характеризуемая нормальной составляющей реакции взаимодействия между телами, скорость их относительного перемещения, степень обработки поверхностей, наличие смазки.  [c.74]

Напряженное состояние возникающее в твердом теле, существенно влияет на процессы его деформации и разрушения.  [c.117]

Важной характеристикой напряженного состояния является коэффициент мягкости , равный отношению максимальных касательных напряжений к максимальным нормальным. Чем меньше этот коэффициент, тем жестче напряженное состояние. Касательные напряжения способствуют развитию пластической деформации, а нормальные— разрыву межатомных связей, хрупкому разрушению твердого тела.  [c.117]

До сих пор мы говорили о вязком разрушении твердых тел, которому предшествует значительная пластическая деформация, при этом разрушение происходит в том месте образца, где образуется шейка весьма малого сечения (см, рис. 4.2). Кроме вязкого разрушения твердые тела могут испытывать хрупкое разрушение, наступающее после малой предварительной пластической деформации или вообще без нее. Хрупкое разрушение наблюдается часто у неметаллов и у многих металлов при очень низких температурах (исключение составляют металлы с ГЦК-решеткой).  [c.137]

Итак, предел прочности твердых тел еще далек, и нужна огромная и кропотливая работа для его достижения. Эта работа, в частности, касается развития количественной теории дислокаций, требует окончательной разгадки механизма образования усов , изучения влияния малых примесей на процессы деформации и разрушения. Злободневной проблемой является проблема получения материалов особой чистоты, поскольку большинство физических свойств твердых тел (не только механических) определяется присутствующими в них примесями.  [c.140]

Изнашиванием называется процесс разрушения и отделения материала с поверхности твердого тела и накопления его остаточной деформации при трении, проявляющийся в постепенном изменении размеров и формы тела. Результат изнашивания называется износом. Свойство материала оказывать сопротивление изнашиванию в определенных условиях трения называется износостойкостью.  [c.12]


В последнее время открылась новая обширная область приложения теории упругости к физике твердого тела. Идеальный кристалл с правильным расположением атомов упруг. Всякие нарушения правильности кристаллической решетки приводят к появлению поля напряжений, которое с достаточной степенью точности может быть изучено методами теории упругости. В следующих главах, посвященных решению задач теории упругости, основное внимание будет обращено именно на эту сторону, будут приведены некоторые результаты, которые необходимы для понимания современных точек зрения па механику неупругих деформаций и разрушения.  [c.266]

За последние десятилетия в физике твердого тела получило широкое распространение представление о несовершенствах кристаллической решетки, называемых дислокациями. Этим несовершенствам приписывается основная роль при объяснении ряда особенностей поведения реальных кристаллов. Механизм пластической деформации, ползучести, разрушения, рассеяния энергии при циклическом деформировании связываются большинством современных авторов с перемещением дислокаций внутри кристалла. Дислокационные представления используются также для объяснения механизма роста кристалла. Возможные дефекты кристаллической решетки не ограничиваются, конечно, одними дислокациями этим термином называются дефекты особого рода, обладающие совершенно определенными свойствами. Однако дислокационные представления, как оказалось, имеют настолько общий характер, что на их основе можно построить очень большое количество разного рода моделей, объясняющих те или иные свойства реального кристалла, и выбрать из этих моделей те, которые наилучшим образом отвечают опытным данным.  [c.453]

В механике деформируемого твердого тела при сравнительно большой точности определения напряженно-деформированного состояния в конструкциях степень точности определения момента разрушения остается низкой. Это несоответствие в первую очередь объясняется тем, что гипотеза сплошности, которая кладется в основу задач определения напряжений и деформаций, дает возможность определить лишь осредненные значения напряжений, не учитывая реально существующей микроструктуры, которая существенно влияет на характеристики прочности и разрушения. Многообразие возможных и реально существуюш,их микроструктур не дает возможности построить единую теорию разрушения, которая могла бы учитывать влияние строения материалов на его прочность с той же степенью точности, как определяются напряжения и деформации на базе гипотезы сплошности, игнорирующей микроструктуру материалов. Описанные в 8.10 критерии кратковременной прочности базируются на представлении о разрушении как о мгновенном акте.  [c.181]

До сих пор, говоря об испытании образца на растяжение, мы касались только внешней стороны явления, не затрагивая внутренних процессов, происходящих на уровне молекулярного строения. И это естественно, поскольку в основу подхода была положена схема сплошной среды, лишенной каких бы то ни было структурных особенностей. Между тем процессы, происходящие в материале при деформации и разрушении, определяются структурой вещества и принципиально не могут быть объяснены средствами механики сплошной среды. Поэтому их изучение выпадает из класса задач, рассматриваемых в курсе сопротивления материалов. Это - уже вопросы физики твердого тела, построенной на совершенно отличной от сопротивления материалов основе. Тем не менее, изучая сопротивление материалов, необходимо иметь хотя бы самое общее представление о том, что происходит в материале при нагружении и от чего зависят упругость и пластичность.  [c.72]

Конечно, задачи и цели курса сопротивления материалов остаются прежними. Как в прошлом, так и ныне надо научить студента основам расчета на прочность и методам механики твердого деформируемого тела. Но сместились акценты. Появились новые идеи о вязкости материала, о развитии трещин, об их блокировании с помощью искусственно создаваемых структур. Те материалы, которые всегда и, казалось, навечно считались ни на что не пригодными, неожиданно стали рассматриваться как весьма перспективные. Наконец, изменилось и наше отношение к понятию сплошной непрерывной среды, в рамках которого рассматривается развитие деформаций и последующего разрушения.  [c.7]

Перейдем теперь к описанию проблем, составляющих основу магнитоупругости. Исследование взаимодействия магнитного поля с упруго-деформируемыми электропроводящими телами составляет предмет магнитоупругости. Укажем лишь некоторые из них магнитострикционная деформация кристаллических тел пьезомагнетизм магнитоупругость тел, обладающих свойством магнитной поляризуемости задачи индукционного нагрева тел задачи разрушения тел под действием импульсных электромагнитных полей и др. Перечисленные проблемы возникают, в частности, при создании импульсных соленоидальных катушек, магнитогидродинамических ускорителей, различных типов магнитокумулятивных генераторов при управлении движением плазмы и во многих других прикладных задачах, где влияние магнитного поля существенно сказывается на деформации твердого тела. Более сложными задачами магнитоупругости являются задачи взаимодействия с электромагнитным полем материалов, обладающих свойством магнитной поляризуемости (ферромагнетики, антиферромагнетики, ферримагнетики). Это объясняется, прежде всего, отсутствием простых фундаментальных з -  [c.239]

П. А. Ребиндера по понижению тЕердости под действием поверхностно-активных молекул, ясно показавшие на обширном материале значение физико-химических явлений для процессов механического разрушения и деформаций твердых тел. Интересные исследования явления предварительных смещений при трении принадлежат В. Н. Верховскому и Э. С. Хайкину с сотрудниками.  [c.8]


Предельная энергия деформации. Эффекты пластической деформации твердого тела при нагружении проявляются в изменении его объема и формы, а внутренние — в возникновении линейных и сдвиговых деформаций. Жильмо [283] развил идею о том, что поглощенная энергия при деформации контролируется прочностью межатомной связи. Это означает, что данная энергия является фундаментальной характеристикой сопротивления материала разрушению. Приняв, что поглощенная пластической деформацией металла удельная энергия равна поглощенной удельной энергии разрушения совершенного кристалла, Жильмо получил следующее соотношение между теоретической прочностью на отрыв и энергией W  [c.163]

Внутренний адсорбционный эффект вызывается адсорбцией поверхностно-активных веществ на внутренних поверхностях раздела — зародышевых микротрещинах разрушения, возникающих в процессе деформации твердого тела. Этот эффект заключается в адсорбции атомов поверхностно-активных веществ на поверхностях микротре-  [c.65]

В аспекте изучения чувствительности процесса деформации твердых тел к свойствам смазочной среды интересна работа [44], в которой исследовано влияние типа кристаллической решетки металлов на интенсивность износа при трении в разных смазочных средах. Во всем диапазоне испь1тываемых нагрузок наблюдали увеличение упрочнения, снижение степени разрушения поверхности по сравнению с сухим трением. Пластифицирующее действие ПАВ при трении зависит от типа кристаллической решетки. Так, если для кобальта влияние ПАВ незначительно (известно, что металлы с ГПУ решеткой в процессе пластической даформации слабо упрочняются из-за малого числа систем скольжения), то при трении в среде с ПАВ никеля и железа наблюдают существенное упрочнение и снижение степени разрушения поверхности по сравнению с сухим трением. Степень упрочнения для никеля больше, чем для железа, а степень разрушения поверхности меньше При трении с ПАВ по сравнению с сухим трением. Отмеченные экспериментальный данные объясняются тем, что ПАВ снижают свободную поверхностную энергию для металлов с ГЦК решеткой на большую величину, чем для металлов с ОЦК решеткой. Авторы констатируют, что пластифицирующее действие ПАВ при трении определяется типом кристаллической решетки испытываемых металлов.  [c.48]

Гипотеза, предложенная акад. П. А. Ребиндером ш Л. А. Шрейнером основана на предположении, что ггри деформации твердых тел непосредственно перед их разрушением накапливается объемная энергия, которая по достижении критического значения приводит к разрушению. Иначе говоря,  [c.271]

Различают три стадии деформации твердого тела под воздействием вггешнггх сил. Стадия упругой деформации, при которой изменение формы твердого тела полностью исчезает при удалении внешних сил, вызвавших его, и деформированное тело нриобретает исходную формуй размеры. Стадия пластической деформации, в период которой тело приобретает новую стабильную форму и размеры. После удаления внешних сил исходная форма и размеры тела не восстанавливаются. Стадия деформации разрушения, когда происходит нарушение сплошности и целостности твердого тела. Деформации разрушения иредшествуют упругая и пластическая деформации.  [c.176]

Под разрушением в механике деформируемого твердого тела понимается макроскопическое нарушение сплошности тела в результате воздействия на него внешнего окружения. Разрушение обычно развивается параллельно с упругой или пластической деформацией твердого тела, или в условиях ползучести. Различают две формы разрушения скрытое разрушение — зарождение и развитие микродефектов, рассеянных но объему тела, и полное разрушение — разделение тела на части. Кроме того, различают несколько видов разрушения в зависимости от того, какие из свойств тела играют онределяюгцую роль в наблюдаемом процессе разрушения хрупкое (без заметных пластических деформаций), пластическое (вязкое), усталостное и длительное.  [c.20]

При измельчении комбинируются раздавливание и удар (при получении крупных частиц), истирание и удар (при тонком измельчении). При дроблении твердых тел затрачиваемая энергия расходуется на упругую и пластическую деформации, на теплоту и образование новых поверхностей, которое и является конечной целью размола. Процесс деформации твердых тел заключается в том, что под действием внешних сил в наиболее слабых местах тела образуются замкнутые или начинающиеся на поверхности мельчайшие трещины. При прекращении внешнего воздействия трещины под действием молекулярных сил могут смыкаться ( самозаживляться ) и тело подвергается лишь упругой деформации. Разрушение наблюдается в том случае, когда трещины настолько увеличиваются, что пересекают твердое тело по всему его сечению в одном или нескольких направлениях. В момент разрушения напряжения в деформирующемся теле превышают некоторое предельное значение (предел прочности материала), упругая деформация сменяется деформацией разрушения и происходит измельчение.  [c.18]

Прочность — это способность твердого тела сопротивляться деформации или разрушению под дei твиeм статических или динамических нагрузок. Прочность определяют с помощью специальных ме-  [c.8]

В настоящее время имеется большое количество работ, посвященных анализу прочности и долговечности материалов и элементов конструкций. В ряде публикаций проблема прочности и разрушения рассматривается с феноменологических позиций— на базе концепций механики деформируемого твердого тела. К другому направлению относятся работы по развитию физики прочности и пластичности материалов, в которых анализ рузрушения проводится на атомарном и дислокационном уровнях, т. е. на микроуровне. В этих исследованиях весьма затруднительно включение в параметры, управляющие разрушением, таких основных понятий механики, как, например, тензоры деформаций и напряжений или жесткость напряженного состояния. Поэтому в последнее время интенсивное развитие получило направление, которое пытается соединить макро- и микроподходы при описании процессов повреждения и разрушения материала и формулировке критериев разрушения.  [c.3]

Изна1ниваиие - процесс разрушения и отделения материала с поверлносги твердого тела и (или) накопление его остаточной деформации при трении. Износ  [c.15]

Метод акустической эмиссии (АЭ) относится к диагностике и направлен на выяснение состояния объектов путем определения и анализа шумов, сопровождающих процесс образования и роста трещины в контролируемых объектах. Он базируется на регистрации акустических волн, возникающих в металле и сварных соединениях при нагружении в результате образования пластических деформаций, движения дислокаций, появления микро- и макротрещин. В основу метода положено явление излучения (эмиссии) упругих волн твердым телом при локальных динамических перестройках его структуры при его деформировании и локальном разрушении (пластическая деформация, скачкообразное развитие т )ещин). Метод применяется для выявления состояния предразруше-ния тяжело нагруженных конструкций сосудов высокого  [c.254]


В теории пластичности изучаются законы, связывающие напряжения с упругопластическими деформациями, и разрабатываются методы решения задач о равновесии и движении деформируемых твердых тел. Теория пластичности, являющаяся основой современных расчетов конструкций, технологических процессов човки, прокатки, штамповки и других, а также природных процессов (например, горообразования), позволяет выявить прочностные и деформационные ресурсы материалов. Пластические деформации до разрушения достигают значений  [c.250]

В [16] экспериментально показано, что зависимость удельной энергии разрушения твердых тел от размеров разрушаемого тела инвариантна к масштабу и типу разрушаемого хрупкого материала (стекло, кварц, мрамор и др.) и ввиду нагружения (бурение, взрыв, дробление, удар, землетрясение). Диапазон изменения масштаба разрушенных тел охватывал 15 пространственных порядков (10 ° -10 ). Нетрудно показать, что установленные в [15] значения 1/Вх равные 1/2,1 1/2,6 и 1/3,1 являются корнями обобщенной золотой пропорции, а именно 1/2,1=0,476=Ар2 1/2,6=0,38=Дрз 1/3,1=0,323=Др,. Следовательно при разрушении твердых тел устойчивость микрокластеров с предельно плотностью энергии деформации контролируется законом золотой пропорции, который в данном случае можно представить в виде  [c.203]

Рассмотрение явления разрушения мегаллов как процесса, связанного с неравновесными фазовыми переходами, гюзволяет ввести обобщенные критерии разрушения, отражающие коллективные эффекты при пластической деформации и разрушении твердых тел при самоорганизации диссипативных структур. Из анализа разрушения о позиций синергетики следует, что устойчивость процессов деформации и разрушения твердых тел определяется диссипативными свойствами среды вб]щзи точек неустойчивости. Показателем этих свойств вблизи неравновесных фазовых переходов являются двух- и трехпараметрические критерии, учитывающие кооперативное взаимодействие пластической деформации и разрушения. В этой связи критерии фрактальной механики разрушения являются комплексами - двух- или трехпараметрическими. Отличие двухпараметрических критериев фрактальной механики разрушения от используемых в линейной механике заключается в том, что они включают только критерии, контролирующие неравновесные фазовые переходы и охра-  [c.340]

Итак, сопротивление разрушению твердых тел определяется диссипативными процессами, в течение которых в материале происходит формирование зон поверхностных переходных слоев - зоны скопления дислокаций и аморфной зоны с фрактально пористой структурой. Показателем диссипативных свойств материала при самоподобном разрушении является фрактальная размерность, учитывающ.ая вклад в диссипацию энергии двух основных механизмов пластической деформации (образование зоны скопления дислокаций) и образования иесппошностей (образованиие аморфной зоны и переходного слоя вблизи вершины трещины).  [c.131]

Гриффитс предполагал, что величина бГ есть поверхностная энергия твердого тела, имеющая ту же физическую природу, что и для жидкости. Однако впоследствии выяснилось, что затраты энергии при создании новых поверхностей при развитии трещины связаны главным образом с работой пластической деформации объемов материала, расположенных перед фронтом трещины. Если линейные размеры этих объемов малы сравнительно с длиной трещины, то поток упругой энергии по-прежнему можно вычислить, сообразуясь только с упругим решением, а затрату энергии на разрушение относить теперь к работе пластической деформации. В этом состоит концепция квазихрупкого разрушения, изложенная в [231]. Эта концепция позволила перейти от идеального материала в схеме Гриффитса к реальным материалам. Эффективность этой концепции состоит в том, что разрушение реальных конструкций практически всегда происходит по квазихрупкому механизму — макрохрупкий излом содержит значительные остаточные деформации вблизи поверхности разрушения. Таким образом, оказалось возможным распространить теорию разрушения Гриффитса на решение инженерных проблем. Энергия Г обеспечивает существование твердого тела как единого целого, а при образовании новых поверхностей (из начального разреза) принято считать, что энергия Г имеет поверхностную природу и поэтому может быть выражена соотношением  [c.328]

В восемнадцати предшествующих главах были изложены различные разделы механики деформируемого твердого тела, при этом практическая направленность каждого из них не очень акцентировалась. Но основная область приложения механики твердого тела — это оценка прочности реальных элементов конструкций в реальных условиях эксплуатации. С этой точки зре-нпя различные главы приближают нас к решению этого основного вопроса в разной степени. Классическая линейная теория упругости формулирует свою задачу следуюш им образом дано пекоторое тело, на это тело действуют заданные нагрузки, точки границы тела претерпевают заданные перемещения. Требуется определить поле вектора перемещений и тензора напряжений во всех точках тела. После того как эта задача решена, возникает естественный и основной вопрос — что это, хорошо или плохо Разрушится сооружение или не разрушится Теория упругости сама по себе ответа на этот вопрос не дает. Правда, зная величину напряжений, мы можем потребовать, чтобы в каждой точке тела выполнялось условие прочности, т. е. некоторая функция от компонент о.-,- не превосходила допускаемого значения. В частности, можно потребовать, чтобы нигде не достигалось условие пластичности, более того, чтобы по отношению к этому локальному условию сохранялся некоторый запас прочности, понятие о котором было сообщено в гл. 2 и 3. Мы знаем, что для пластичных материалов выполнение условия пластичности в одной точке еще не означает потери несущей способности, что было детально разъяснено на простом примере в 3.5. Поэтому расчет по допустимым напряжениям для пластичного материала безусловно гарантирует прочность изделия. Для хрупких материалов условие локального разрушения отлично от условия наступления текучести и локальное разрушение может послужить началом разрушения тела в целом. Поэтому расчет по допускаемым напряжениям для хрупких материалов более оправдан. Аналогичная ситуация возникает при переменных нагрузках и при действии высоких температур. В этих условиях даже пластические материалы разрушаются без заметной пластической деформации и микротрещина, возникшая в точке, где 42  [c.651]

Гриффитс предполагал, что величина бГ есть поверхностная энергия твердого тела, имеющая ту же физическую природу, что и для жидкости. Однако впоследствии выяснилось, что затраты энергии при создании новых поверхностей при развитии трещины связаны главным образом с работой пластической деформации объемов материала, расположенных перед фронтом трещины. Если линейные размеры этих объемов малы сравнительно с длиной трещины, то поток упругой энергии по-прежнему можно вычислить, сообразуясь только с упругим решением, а затрату энергии на разрушение относить теперь к работе пластической деформации. В этом состоит концепция квазихрункого разруше-  [c.28]


Смотреть страницы где упоминается термин Деформация твердых тел разрушения : [c.5]    [c.191]    [c.23]    [c.26]    [c.29]    [c.173]    [c.53]   
Порошковая металлургия Изд.2 (1980) -- [ c.18 ]



ПОИСК



Деформация разрушения



© 2025 Mash-xxl.info Реклама на сайте