Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эйлера эллиптические координаты

Следовательно, это уравнение представляет прямую, и оно может быть отождествлено с уравнением прямой линии в эллиптических координатах, которое будет, очевидно, алгебраическим относительно д и д . Таким путем мы воспроизвели, следуя Лагранжу, очень важный результат, данный Эйлером и выражающий, что уравнение (Е) допускает алгебраический интеграл. На этом результате основывается сложение эллиптических функций.  [c.497]

Эллиптические координаты Эйлера. В случае плоскости параметрические выражения (20) декартовых координат х, у, если положим = с , = О, принимают вид  [c.383]


Движение точки, притягиваемой двумя неподвижными центрами в отношении, обратно пропорциональном квадрату расстояния. Эта знаменитая задача рассматривалась впервые Эйлером, который показал, что в случае плоского движения она приводится к квадратурам. Рассмотренная снова Лагранжем, она была затем решена Якоби в эллиптических координатах при помощи метода разделения переменных способом, который мы кратко здесь изложим.  [c.385]

При п = 1 и п = 2 имеем интегрируемые задачи Кеплера и Эйлера. В задаче Кеплера дополнительным интегралом является интеграл момента, а задача Эйлера интегрируется разделением переменных (в эллиптических координатах). Задача Кеплера вполне интегрируема и в многомерном евклидовом пространстве [220]. Наиболее интересный с точки зрения релятивистской механики случай пространства Минковского рассмотрен в работе [93]. В литературе, по-видимому, не отмечалась полная интегрируемость многомерной задачи двух центров.  [c.48]

Большое число важных задач гамильтоновой механики решены с использованием эллиптических координат в 1R" (или их вырождений). Эллиптические координаты введены и изучены Якоби [174]. При п = 2 они были известны еще Эйлеру.  [c.101]

Аналогичным образом интегрирование в двух из интегрируемых случаев задачи о движении твердого тела с неподвижной точкой (случай Эйлера инерционного движения и случай осевой симметрии) может быть непосредственно выполнено с помош ью введения сферических координат (Эйлер, Лагранж). Возможность интегрирования в третьем случае (Софьи Ковалевской) обусловлена тем, что функция Лагранжа приобретает вид (li) — (I2), если ввести эллиптические координаты qi, qz (Колосов).  [c.179]

Большая часть сделанных добавлений связана с включением в курс параграфов, содержащих дополнительные сведения о движении твердого тела вокруг неподвижной точки (кинематические и динамические уравнения Эйлера), и главы, где излагаются основы метода обобщенных координат (уравнения Лагранжа) разнообразие требований, предъявляемых к курсу теоретической механики при подготовке специалистов разных профилей, заставляет уделить какое-то место этому материалу и в кратком курсе. Изложение в минимальном объеме элементарной теории гироскопа и таких актуальных в наши дни вопросов, как движение в поле тяготения (эллиптические траектории и космические полеты) и движение тела переменной массы (движение ракеты), в книге сохранено дополнительно написан параграф, посвященный понятию о невесомости. Представление о содержании книги в целом и порядке изложения материала дает оглавление.  [c.9]


Первые 6 лекций Якоби посвящает изложению основных принципов механики принципу сохранения движения центра тяжести системы, принципу живой силы, принципу площадей и принципу наименьшего действия. С 10-ой лекции Якоби развивает теорию множителя" систем обыкновенных дифференциальных уравнений, являющуюся обобщением теории эйлеров-ского интегрирующего множителя. Якоби показывает каким образом можно в целом ряде случаев построить с помощью последнего множителя" всю систему п независимых интегралов. Изложив подробно теорию этого множителя, Якоби затем применяет ее к решению ряда механических задач. С 19-ой лекции Якоби, исходя из вариационного принципа Гамильтона, излагает тот метод интегрирования уравнения с частными производными первого порядка, который известен под названием метода Якоби-Гамильтона". В следующих лекциях этот метод примендется к ряду задач, взятых главным образом из области небесной механики. В 26 лекции Якоби излагает теорию эллиптических координат и показывает их приложение к разысканию геодезических линий эллипсоида, к задаче построения карт, к выводу основной теоремы Абеля и проч. Наконец, последние лекции Якоби посвящены изложению его классических методов интегрирования нелинейных уравнений в частных производных первого порядка.  [c.4]

В качестве еще одного применения эллиптических координат рассмотрим задачу о плоском движении материальной точки в поле притяжения двух неподвижных центров эта задача была проинтегрирована Эйлером в 1760 г. Пусть —декартовы координаты в плоскости движения, (О, с), (О,-с) — координаты притягивающих центров (с > 0). Перейдем к эллиптическим координатам в плоскости = хьхг , считая, что 02 — = 2с. Это означает, в частности, что при фиксированных значениях Л уравнение х / а - Л) +Х2/(аг - Л) = 1 задает коническое сечение, фокусы которого совпадают с неподвижными центрами. В симплектических координатах Л, рь функция Г амильтона этой задачи равна  [c.103]

В качестве еще одного применения эллиптических координат мы рассмотрим задачи о и.юском движении материальной точки в поле притяжения двух неподвижных центров. Эта задача была проиитегрироу. ) Эйлером в 1760 г. Пусть Х], Хг — декартовы коорлинлт , 1 плоскости движсния и (О, с), (О, —с) —  [c.142]

Как и в случае конечномерных динамических систем, в области задач об оптимальном управлении системами с распределенными параметрами сохраняют полную работоспособность усовершенствованные методы классического вариационного исчисления. При этом и здесь основное внимание было уделено составлению необходимых условий минимума для экстремальных задач со связями, трактуемыми как проблема Майера — Больца. Главным образом это было сделано для задач, связанных с уравнениями эллиптического типа. Было показано, что в таких типичных задачах, возникающих из проблем оптимального управления, необходимые условия стационарности (уравнение Эйлера и естественные граничные условия, а также условия Вейерштрасса Эрдманна) составляются при помощи обычных приемов. Критерии опираются снова на множители Лагранжа которые здесь зависят уже обычно от пространственных координат, а соответствующие дифференциальные уравнения снова конструируются исходя из подходящих форм функции Гамильтона. Условия стационарности дополняются необходимым условием Вейерштрасса сильного относительного минимума. Разумеется, это условие, которое записывается через условие экстремальности функции Гамильтона на оптимальных решениях, имеет смысл, аналогичный соответствующему условию принципа максимума. Важно, однако, заметить, что при работе с модификациями классических методов вариационного исчисления в случае уравнений с частными производными проявляются некоторые новые черты. В результате получаются условия оптимальности, более сильные, нежели известные в настоящее время обобщения принципа максимума на системы, описываемые уравнениями в частных производных. Упомянутые черты проявляются, в частности, в связи с тем обстоятельством, что приращение минимизируемого функционала при изменении объемного управления (за счет варьирования от оптимального управления) в пределах области достаточно малой меры зависит не только от вариации управления и меры области, но также существенно определяется и предельной формой области варьирования. Таким образом, получается, что при изменении формы области, определяющей вариацию, могут, получаться более или менее широкие необходимые условия экстремальности. Как отмечено выше, эффект анизотропии варьирования пока был получен только классическими методами. Причины этого, по-видимому, различны некоторые работы, посвященные принципу максимума, относятся к таким задачам, где этот эффект вообще не проявляется, в других случаях эффект анизотропии исключался вследствие ограничения при исследованиях лишь вариациями специального вида. Полезно также заметить, что описываемый эффект анизотропии расширяет возможность управления и оптимизации в обширном классе случаев независимо от типа исходных уравнений. Эффективность классических методов вариационного исчисления была проверена на конкретных типах задач. В частности, таким путем была исследована задача об оптимальном распределении проводимости электропроводной жидкости (газа) в канале магнитодинамического генератора электрической энергии. Эта задача как раз доставляет пример вариационной проблемы, где эффект анизотропии варьирования играет существенную роль. Развитию классических методов исследования посвящены работы К. А. Лурье.  [c.239]


Определение положения тела, двигающегося по параболической орбите (144) — 92. Уравнение, связывающее два радиуса и хорлу. Уравнение Эйлера (146)—93. Определение положения тела, двигающегося по эллиптической орбите (148) —94. Геометрический вывод урав-иення Кеплера (149) —95. Решение уравнения Кеплера (149) — 96. Диференциальные поправки (150)—97. Графическое решение уравнения Кеплера (151) — 93. Перечисление формул (153)—99. Разложение Е в ряд (153) —100. Разложение г и v в ряды (156) — 101. Прямое вычисление полярных координат (159) —10I Опре еление положения тела, двигающегося по гиперболической орбите (163) — 103. Определение положения тела, двигающегося по эллиптической или гиперболической орбите, когда е почти равно единице (164).  [c.12]


Смотреть страницы где упоминается термин Эйлера эллиптические координаты : [c.499]    [c.503]    [c.305]   
Курс теоретической механики Том 2 Часть 2 (1951) -- [ c.383 ]



ПОИСК



485 эллиптические

Координаты эллиптически

Координаты эллиптические

Эйлер

Эйлера эйлеров



© 2025 Mash-xxl.info Реклама на сайте