Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Зоны переходных металлов

Эффективная масса электрона может быть больше и меньше массы свободного электрона и даже отрицательной. В случае узкой разрешенной зоны электрон не может значительно ускориться и формально его эффективная масса т >т — массы свободного электрона (например, электроны в ( -зоне переходного металла группы Ре) [10].  [c.294]

Ф и е, 48. Предполагаемая форма кривых плотности состояний в зоне проводимости и в d-зоне переходного металла.  [c.125]


ЗОНЫ ПЕРЕХОДНЫХ МЕТАЛЛОВ  [c.225]

Зоны переходных металлов  [c.231]

Следует, однако, помнить, что энергетические зоны переходных металлов сами по себе весьма сложны, поэтому не исключено, что их расчет никогда не будет простым с математической точки зрения. Для переходных металлов расчеты с помощью псевдопотенциалов приводят к секулярным уравнениям того же вида, что и более ранние методы, и поэтому можно считать достижением лишь более строгое обоснование модели. Однако при решении проблем общего характера уравнения метода псевдопотенциалов для переходных металлов позволяют использовать теорию возмущений. Оказывается возможным расчет экранирования, полной энергии, а также анализ широчайшего спектра свойств переходных и благородных металлов. В таких расчетах, как и в случае простых металлов, нам не нужно тратить время на определение самих зонных структур.  [c.232]

В последние годы очень интенсивно проводилось изучение свойств магнитных примесей, таких, как марганец и железо, растворенных в нормальных металлах, например в меди. Многие свободные ионы переходных металлов с частично заполненными -оболочками имеют в основном состоянии нескомпенсированный электронный спин, а следовательно, и отличный от нуля магнитный момент. Проведенный нами анализ зон переходных металлов и резонансных состояний показал, что такие ионы, будучи растворенными в простых металлах, сохраняют в основном свои атомные характеристики. Поэтому можно ожидать, что они будут приводить к возникновению магнитных моментов в простых металлах, локализованных вблизи такой примеси. Так оно часто и бывает, и эти моменты дают вклад в парамагнитную восприимчивость и во многие другие свойства сплавов.  [c.538]

Впоследствии люди, конечно, проявили большую изобретательность в комбинировании различных методов. Так, например, иногда при рассмотрении ( -зон переходных металлов полезно применять подход, аналогичный приближению сильной связи, однако учитывать х — -смешивание не путем добавления функций сильной связи для 5-зовы, а использовать самосогласованным образом один из методов плоских волн, описанных выше. Разумеется, в проведенном выше обзоре методов расчета энергетических зон мы лишь поверхностно затронули несколько больших областей исследования.  [c.213]

Для практической термометрии интерес представляют переходные металлы, имеющие частично заполненные -уровни, а также з-уровни (символы з и соответствуют значениям орбитального квантового числа О и 2 см. [6]). Поскольку -электроны более локализованы, чем з-электроны, проводимость обусловлена главным образом последними. Однако вероятность рассеяния 3-электронов в -зону велика, поскольку плотность -состояний вблизи уровня Ферми высока (рис. 5.5), поэтому удельное сопротивление переходных металлов выще, чем у непереходных. Наличие -зоны влияет также на характер температурной зависимости. При высоких температурах величина кТ может быть уже не пренебрежимо мала по сравнению с расстоянием от уровня Ферми до верхней или нижней границы -зоны. Предположение, что поверхность Ферми четко разделяет занятые и незанятые состояния, перестает быть верным, и для параболической -зоны в формулу удельного сопротивления вводится поправочный коэффициент (1—5Р), где В — постоянная. Однако плотность состояний в -зоне вовсе не является гладкой функцией энергии (рис. 5.5), поэтому эффект будет осложнен изменением плотности состояний в пределах кТ от уровня Ферми. Отклонение температурной зависимости от линейной может быть как положительным, так и отрицательным.  [c.194]


Кй — сжимаемость в приближении свободных электронов). Очевидно, что полученное сходство расчета с экспериментом заметно лучше, чем в приближении свободного электронного газа Ферми. Расхождение теории и эксперимента для Mg, Na, К составило соответственно 0,03, 0,006 и 0,007 Ryd/эл вместо 0,3 0,16 0,14. Для ряда групп материалов (щелочные металлы, например) специальным выбором псевдопотенциала можно добиться еще лучшего согласия с экспериментом. Одно из главнейших направлений развития исследований в этой области сейчас — разработка способов расчета энергетических характеристик переходных металлов, для которых из-за близости Ы и 4s (4электроны проводимости не вполне правомерно.  [c.123]

В результате исследования микроструктуры покрытия (с 9% Р), наплавленного при температуре 1100° С в течение 20 мин на разные металлы, установлено образование переходного слоя на контактной границе. На железе и нержавеющей стали в этом слое выявлена измененная зона в металле, полоска твердого раствора и дендриты в покрытии со стороны подложки. Граница раздела в обоих случаях плоская. На никеле контактная граница сильно разветвлена, что свидетельствует об ускоренном растворении границ зерен металла в контакте с расплавом [2]. В результате этого процесса возможно диспергирование металла подложки.  [c.158]

Получение проволоки с высоким пределом прочности — канатной ВС и пружинной (типа рояльной)— обусловливается применением очень больших общих обжатий, при которых в отдельных местах возможен переход металла из вязкого состояния в хрупкое и появление местной хрупкости. Дальнейшее увеличение общего обжатия приводит к резко выраженной хрупкости проволоки по всей её длине. Согласно приведённой на фиг. 28 схеме можно различить три зоны состояния наклёпанного волочением металла 1)зону вязкого состояния, 2) критическую зону переходного состояния, 3) зону хрупкого состояния.  [c.407]

Пользование полученной зависимостью связано с весьма трудоемкими вычислениями. Чтобы упростить расчеты, целесообразнее пользоваться приближенными формулами, которые дают хорошие результаты для средних температур по толщине стенки во всем интервале изменения г от г = Гх до г > rj и для температурного поля = (гл ) в том же интервале, кроме переходной зоны от металла к пластической массе /"i < г < ri -f 0,56. Выводы относятся к случаю, когда критерий Био соизмерим или больше единицы. В противном случае все расчеты упрощаются,  [c.256]

Наиболее прогрессивным по первому направлению нужно считать применение сплавов, обладающих в интервале температур 540—650° С эффектом дисперсионного твердения, т. е. приобретающих максимальные свойства в процессе высокого отпуска наплавленного металла. Применение таких сплавов имеет и то преимущество, что последующий отпуск дает возможность снять напряжения, возникающие в процессе наплавки, а также улучшить переходную зону основного металла. По второму направлению  [c.554]

ЗОННЫЙ МАГНЕТИЗМ — магнетизм металлов и сплавов, интерпретируемый в рамках моделей, основанных на зонной теории. Типичные представители зонных магнетиков (ЗМ) — переходные металлы Fe, Со, Ni, Сг, Мп, их сплавы и соединения.  [c.93]

Энергетич. спектр переходных металлов представляет собой широкую sp-зону, в к-рую погружена система пяти узких пересекающихся d-аон (рис. 1) [1]. По срав-  [c.93]

Металлографическое исследование имеет целью контроль физической сплошности швов, выявление трещин, пор, раковин, непроваров, шлаковых включений, а также установление структурной характеристики металла по основным зонам (переходной, термического влияния).  [c.485]

На рис. 292 показан вид коррозионного разрушения 17%-ной хромистой стали в сварном соединении, а на рис. 96—структура металла в переходной зоне, основного металла и металла шва. По границам зерен крупных кристаллов в зоне, смежной со швом, видны выделения структуры мартенситного типа.  [c.509]


Толстые пленки и структуру окисленных слоев хорошо определяют металлографическими исследованиями (рис. 350). Вследствие хрупкости этих слоев необходимо соблюдать ряд предосторожностей при изготовлении микрошлифов. При металлографическом исследовании удается хорошо проследить структурные изменения в окисленном слое и в переходной зоне между металлом и окислами.  [c.637]

Уайт и Вудс [245] приводят перечень степеней Т, которые приведены в соответствие с значениями идеального теплового сопротивления при низких температурах для переходных металлов, а также для натрия и благородных металлов. Для пяти из 22 металлов, по-видимому, требуется ввести степень зависимости теплового сопротивления от температуры, большую чем 2,6, а для двух металлов — меньшую чем 2,0. Из формул (11.3а) и (11.36), казалось бы, можно сделать вывод, что в области (ниже 0,10), где. зависимость Т , пожалуй, справедлива, при простых допущениях модели Блоха и для сферических ферми-по-верхностей зоны Бриллюэна имеет место следующее соотношение между низкотемпературным идеальным электронным тепловым сопротивлением и предельным высокотемпературным значением  [c.220]

Рассмотрим случаи стимулирования коррозии или катодного процесса под влиянием хемосорбирующихся ПАВ молекулярного типа. Типичным примером этого служит действие ацетиленовых соединений при коррозии железа или никеля. Несмотря на вероятность протонирования ацетиленовых спиртов, вкладом в возможное участие в разряде протонированной формы ПАВ можно пренебречь, так как с ростом концентрации ПАВ этот вклад должен был бы возрастать-л при высоких концентрациях ацетиленовые ПАВ не могли бы, быть ингибиторами. Адсорбция ацетиленовых ПАВ, как ул е отмечалось, идет с участием л-электронов и вакансий в -зоне переходных металлов, что должно привести к некоторому -ф1-эффекту отрицательного знака, т. е. к ускорению катодного процесса. Однако при адсорбции ацетиленовых ПАВ образуются довольно плотные поверхностные слои, и на занятых местах поверхности металла, т. е. на местах локализации отрицательного 1 31-потенциала, реакция практически не идет. В связи с этим основной вклад в суммарную скорость процесса вносит реакция на поверхности, свободной от адсорбированных частиц ПАВ. Адсорбция ацетиленовых соединений приводит к изменению степени покрытия поверхности металла водородом, т. е. к изменению энергии адсорбции или энергии связи металл — водород. Очевидно, что в этом случае относительный вклад 0-, -фг и ме-н-эффектов, а также их знаки будут определять ингибирующие или стимулирующие свойства данного ПАВ.  [c.86]

При низких температурах в переходных металлах проявляется эффект элек-трон-электронного рассеяния, приводящий к появлению квадратичного члена в зависимости удельного сопротивления от температуры. Этот тип электронного рассеяния на большой угол (см. [3], с. 250) может возникать в случае, когда поверхность Ферми несферическая или имеются вклады более чем из одной энергетической зоны. Для большинства переходных металлов этот квадратичный член становится определяющим ниже 10 К. Для ферромагнитных металлов возникает еще одна причина появления еще одного квадратичного члена, обусловленного рассеянием электронов проводимости на магнитных спиновых волнах. Кроме того, для всех ферромагнитных металлов наблюдаются аномалии зависимости удельного сопротивления от температуры вблизи точки Кюри.  [c.195]

Существует класс полупроводниковых приборов, выполненных на основе смешанных окислов переходных металлов, которые известны под общим названием термисторов. Термин термистор происходит от слов термочувствительный резистор . Толчком к разработке термисторов послужила необходимость компенсировать изменение параметров электронных схем под влиянием колебаний температуры. Первые термисторы изготавливались на основе двуокиси урана ПОг, но затем в начале 30-х годов стали использовать шпинель MgTiOз. Оказалось, что удельное сопротивление MgTiOз и его температурный коэффициент сопротивления (ТКС) легко варьируются путем контролируемого восстановления в водороде и путем изменений концентрации MgO по сравнению со стехиометрической. Использовалась также окись меди СиО. Современные термисторы [60, 61] почти всегда представляют собой нестехиометрические смеси окислов и изготавливаются путем спекания микронных частиц компонентов в контролируемой атмосфере. В зависимости от того, в какой атмосфере происходит спекание (окислительной или восстановительной), может получиться, например, полупроводник п-типа на поверхности зерна, переходящий в полупроводник р-типа в глубине зерна, со всеми вытекающими отсюда последствиями для процессов проводимости. Помимо характера проводимости в отдельном зерне, на проводимость материала оказывают существенное влияние также процессы на границах между спеченными зернами. Высокочастотная дисперсия у термисторов, например, возникает вследствие того, что они представляют собой сложную структуру, образованную зонами плохой проводимости на границах зерен и зонами относительно высокой проводимости внутри зерен.  [c.243]

Так, например, следует учитывать тепловое расширение металла [83, 84] ). Вызывающая его ангармоничность колебаний решетки должна приводить к нелинейности температурной зависимости удельного сопротивления [85]. Кроме того, полагают, что, начиная с температуры, лежаш ей на 50—100° ниже точки плавления металла, концентрация дефектов решетки, вызванных тепловым движением, быстро растет последнее также должно оказывать существенное влияние на температурный ход сопротивления [86, 87]. Наконец, у переходных металлов рассеяние, обусловленное переходами между s-и б -зонами, тоже может вносить свой вклад в сопротивление [88—91]. Чтобы учесть отклонения температурно зависимости сопротивления от линейности, появляющиеся по той или иной причине при высоких температурах, Грюнейзен ввел в теоретическую формулу эмпирический множитель -fb, Г ), вследствие которого достоверность данных, приведенных в табл. 4, несколько уменьшается.  [c.192]


Связь между большой электронной теплоемкостью и структурой d-обо-лочек переходных металлов была впервые замечена Моттом [168]. Можно ожидать, что функция gaQ, а следовательно, и электронная теплоемкость будут иметь здесь большую величину. Действительно, волновые функции d-электронов отличны от нуля на значительно меньшем расстоянии от центра атома, чем волновые функции валентных s-электронов. Следовательно, перекрытие волновых функций соседних атомов будет незначительным и с -зона будет уже, чем s-зопа. Далее, d-оболочка должна вмеш ать по 10 электронов на атом, тогда как s-оболочка—только 2. Поэтому, если допустить, что в металлах переходных груин d- и s-зоны валентных электронов перекрываются  [c.358]

Реальная поверхность металла имеет весьма сложный характер и представляет собой своего рода переходную зону между металлом и окружающей средой, например воздухом или смазываюи(ей жидкостью. Физически чистой (ювенильной) поверхностью является такая гюверх-ность твердого тела, на которой нет чужеродных атомов. Ювенильные поверхности на металле получить непросто, для этого используют методы скола, нагревание в высоком вакууме и др. В этих условиях над металлической поверхностью наблюдается облако непрерывно движу-1ЦИХСЯ свободных электронов, покидающих металл и снова возвращающихся в него.  [c.57]

Увеличение рабочих параметров современных машин и аппаратов (рост единичных мощностей, уровня температур, грузоспособ-ности, маневренности, а также работа изделий в условиях переходных и форсированных эксплуатационных режимов и т. д.) при одновременном снижении металлоемкости конструкций и использовании новых металлических материалов повышенной прочности приводит к возрастанию как общей, так и местной напряженности конструкции с выходом в зонах концентрации металла за пределы упругости. Эксплуатационная нестационарность (тепловая и механическая) нагружения изделий сопровождается работой материала в условиях циклического упругопластического деформирования. Такое нагружение характерно для конструкций энергетического, транспортного и химического машиностроения, авиации, ракетной техники, реакторостроения и т. д. [127, 170].  [c.3]

Рис. 1. Схематическое изображение плотности состояний переходных металлов. В условиях, когда ферми-уровень лежит в пределах rf-зоны, плотность уровней р( )вйлизи (f з гораздо выше, чем в ер-зоне. Рис. 1. <a href="/info/286611">Схематическое изображение</a> <a href="/info/16521">плотности состояний</a> <a href="/info/18209">переходных металлов</a>. В условиях, когда <a href="/info/7474">ферми-уровень</a> лежит в пределах rf-зоны, плотность уровней р( )вйлизи (f з гораздо выше, чем в ер-зоне.
Распределение зарядовой плотностн в ферромагн. металлах (Fe, Ni, Со) близко к атомному [3]. Двойств, характер поведения d-электропов обусловлен тем, что перекрытие d-орбиталей соседних атомов в переходных металлах оказывается значительным, и электроны имеют возможность перемещаться по всему образцу. Б результате атомный d-уровень у1лнряется и образуется d-зона. В то же время между d-электронами существует кулоновское взаимодействие. Иаиб. значит, вклад в энергию взаимодействия вносит кулоновское отталкивание электронов с противоположными направлениями проекции спина, находящихся вблизи одного п того >ко узла кристаллит, решётки. Энергия взаимодействия двух таких электронов  [c.93]

Наиб, существенным обстоятельство.ч для появления магн. порядка в переходных металлах является то, что энергия и в этих металлах больше ширины d-зоны где W i эВ ширина d-зоны). В этом случае кулоновское межзлектронное взаимодействие существенно влияет на движение d-алектропов и в силу этого радикально меняет их плотность состояний. Как будет показано ниже, именно это взаимодействие приводит к раздвижке энергетич. зон электронов с разными направлениями спина и возникновению спонтанной намагниченности [7]. Простейшим образом, не учитывая орбитального вырождения и пренебрегая взаимодействиями, проявляющими себя па болыггих расстояниях, гамильтониан 3. м. можно записать в след, виде (см. Хаббарда модель),  [c.93]

ПРОМЕЖУТОЧНАЯ ВАЛЕНТНОСТЬ — специфич. состояние ионов в твёрдом теле, при к-ром в ионном остове имеется в среднем не целое (дробное) число электронов. Термин П. в. применяется в осн. по отношению к соединениям редкоземельных элементов и актиноидов, реже — переходных металлов. При формировании твёрдых тел из атомов или ионов их валентные электроны обычно уходят на образование хим. связей либо переходят в зону проводимости, а электроны частично заполненной 4/-оболочки вследствие малого её размера ( 0,4 А) остаются локализованными в ионном остове. Типичное значение валентности редкоземельных элементов 3- -. Это означает, что атом покидают 3 валентных электрона. Их 4/-оболочка заполнена частично, т. е. в ней меньше 14 электронов. Существуют, однако, аномальные редкоземельные элементы, у к-рых часть атомов имеет нестандартную валентность 4-f- у Се и Рг, 2 у Sm, Ей, Тш, Yb. Появление валентностей, отличных от 3-)-, обусловлено особой стабильностью пустых либо целиком заполненных оболочек. Напр., атомы Се наряду с валентностью 3-)-, при к-рой 4/-оболоч-ка атома содержит 1 электрон (4/i), имеют валентность 4 -, когда 4/-оболочка пуста (4/ ). Атомы Yb наряду с валентностью 3- - (4/i ) имеют валентность 2- - (4/ ). Аналогичная картина наблюдается в случае ровно наполовину заполненных 4/-оболочек (4/ ) вместо  [c.141]

Структура электронных спектров кристаллов при обычных условиях сильно размыта под действием тепловых колебаний атомов кристаллич. структуры, и в большинстве случаев наблюдаются широкие размытые спектральные полосы. При гелиевой темп-ре. можно наблюдать дискретные спектральные линии, к-рые возникают при прямых переходах между экситонными зонами, при переходах между дискретными уровнями электронов и дырок, локализованных на дефектах решётки, либо на акцепторных или донорных примесях в гомеополярных полупроводниках (см. Спектроскопия кристаллов). Помимо колебаний атомов на форму и ширину экситонных линий влияют тип связи в кристалле, его зонная структура и микроструктура экситонного возбуждения. В сильнолегир. полупроводниках ширина линии может зависеть от степени легирования. Дискретные линии наблюдаются и при комнатной темп-ре в поглощении и люминесценции кристаллов, содержащих ионы переходных металлов (хром, железо, палладий, платина и др.), лантанидов и трансурановых элементов, имеющих незаполненные d- и /-оболочки. В кристаллах высокого качества линии таких примесных ионов, напр, линия иона в рубине и линия в иттрий-алюминиевом  [c.263]

Характерным признаком электронной структуры аморфных сплавов типа металл — металл является расщепление rf-зоны, степень которого возрастает с увеличением числа rf-электронов. Результаты исследования аморфного сплава ueoZr o методом УФС указывают на то, что электронные состояния в нем и, следовательно, структура ближнего порядка близки к таковой в интерметаллиде Сиз2гз. Важные результаты получены при изучении комптоновского рассеяния. Так, оказалось, что представления о переходе части валентных электронов металлоида в 3d-30Hy атомов переходных металлов не оправдываются для сплавов системы Fe—В (В>15 /о).  [c.19]

Для аморфных сплавов типа металл — металл, представляющий собой сплавы системы РЗМ — переходный металл или легкий переходный металл Те — тяжелый переходный металл Ть, также были определены РФС- и УФС-спектры. На рис. 6.14 приведены УФС-спектры валентных электронов в аморфных сплавах Те — Ть, содержащих цирконий в качестве Те. Для этих спектров характерно то, что с увеличением числа d-электронов в металле Ть расщепление й -зоны усиливается и интервал энергий, соответствующий такому расщеплению, увеличивается в сторону высоких значений энергии связи fl9]. Так, в аморфных сплавах Pd25Zr75 и Сизо2г7о З -зона полностью расщеплена на подзоны, отвечающие энергии Ферми Ер и большим энергиям связи в = 34-4 эВ. В отличие от этих сплавов в аморфном сплаве железа с цирконием, Ре242г7б, й -зона остается нерасщепленной, поскольку число й -электронов в железе невелико по сравнению с палладием или медью.  [c.187]


Интересным является вопрос о том, действительно ли в аморфных сплавах реализуется условие Нагеля—Тауца или нет. Ферми-евское волновое число можно непосредственно измерить в экспериментах по комптоновскому рассеянию и аннигиляции позитронов. Кроме того, если можно воспользоваться моделью свободных электронов, то кр можно рассчитать из величины концентрации валентных электронов на атом е/а) и атомного объема. К сожалению, аморфные сплавы, как правило, содержат большое число компонентов, наиболее важные из которых—переходные металлы, имеющие г -зону. Для них разделение внутренних и внешних валентных электронов неоднозначно, поэтому затруднено и определение kw по результатам комптоновского рассеяния и аннигиляции позитронов. Интересно, что поскольку у-переходных и благородных металлов число валентных электронов Z=e/a меньше 2, то сплавлением их с поливалентными элементами, у которых Z—e/a больше 2, можно в конечном счете получить среднее число валентных электронов 2=2. В настоящее время почти не проводят непосредственные измерения kw в аморфных сплавах, содержащих переходные  [c.204]

Футеровка Спекшаяся зона Переходная зона Количество дней работы футеровки Количество выплавленного металла за кампанию, т Расход футеровоч-ной массы, Ksfm  [c.44]

Переходная зона к металлу шва (справа). На участке перегрева сталь GS-40 (слева) имеет видманштеттову структуру. 100 1, (9) табл. 2.4.  [c.42]

Проведенное обсуждение относилось в основном к переходным металлам в более сложных случаях полученные нами выводы не всегда справедливы. Мы полагаем, что за проводимость в основном ответственны а-электроны, однако их рассеяние на /-электронах может обусловливать заметное сопротивление. В сечении рассеяния тогда появляется член, пропорцио нальный Т , что приводит к вкладу, пропорциональному в р , и вкладу, пропорциональному Т в Так как при понижении температуры эти вклады уменьшаются медленнее, чем рр и для чистых переходных металлов, их удается выделить при низких температурах. Однако фононные сопротивления увеличиваются из-за возможности рассеяния электронов проводимости в дополнительные состояния (в /-зоне), поэтому сопротивление, обусловленное электрон-элек-тронным рассеянием, дает меньший вклад в полное сопротивление, чем это может показаться на первый взгляд.  [c.206]


Смотреть страницы где упоминается термин Зоны переходных металлов : [c.284]    [c.174]    [c.138]    [c.94]    [c.577]    [c.321]    [c.636]    [c.693]    [c.693]    [c.191]   
Смотреть главы в:

Теория твёрдого тела  -> Зоны переходных металлов


Теория твёрдого тела (1972) -- [ c.225 , c.238 ]



ПОИСК



1---переходные

Переходная зона

Переходные металлы

Поливалентные металлы зонная структура переходных металлов



© 2025 Mash-xxl.info Реклама на сайте