Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упругое тело, потенциал напряжений точке

Узкие трубки 309 Узлы и пучности 58, 82, 390 Упругое тело, потенциал напряжений в нем 304 сила, приложенная в одной точке 410  [c.475]

Здесь тензор содержит 81 компоненту. Если учесть равенство сопряженных сдвиговых напряжений и деформаций, то получим по шесть независимых компонент для тензоров напряжений и деформации. Тогда тензор Сщ выражается с помощью 36 компонент. Если учесть существование потенциала упругих сил, то из 36 компонент тензора j независимыми будут только 21 компонента. С их помощью зависимость напряжение - деформация для анизотропного упругого тела можно выразить в матричном виде  [c.180]


Однородное интегральное уравнение, союзное к (2.24), представляет собой уравнение, которое можно получить, если пытаться построить решение первой основной задачи для областей Dt, 02, Оз, . .., От в виде обобщенного упругого потенциала двойного слоя, распределенного на всех поверхностях ). Поскольку краевые условия однородны, то все смещения в дополнительных областях будут равны нулю, а следовательно, будут равны нулю и напряжения. Из непрерывности же вектора напряжений на границе будет вытекать, что во всей области О напряжения равны нулю, что приводит к смещениям тела как жесткого целого. Поскольку же нетривиальное решение при однородных условиях существует, то в общем случае уравнение  [c.567]

Если поэтому желательно получить явное соотношение между напряжением и деформацией, то нужно вычислить функцию ] , а это в свою очередь ведет к необходимости некоторых физических предположений относительно природы деформируемого тела. Мы ограничимся рассмотрением тел, которые имеют постоянную плотность в недеформированном состоянии, а упругий потенциал этих тел зависит только от трех инвариантов деформации А- - 3. определяемых выражениями (5.1), и от скалярных функций координат. Твердое тело, обладающее последним свойством, называется изотропным, если, далее, эти скалярные функции являются постоянными, можно сказать, что тело является однородным. Следовательно, для однородного изотропного тела величина Ш является функцией только 1 , 1 , 1з- В этой книге будут рассматриваться однородные изотропные тела.  [c.36]

Материал, свойства которого одинаковы для образцов, вырезанных в любом направлении, называется изотропным. Более точно, это определение изотропии относится к весьма малым образцам, вырезанным в окрестности одной и Toii же точки. Изотропный материал может быть неоднородным, т. е. упругие свойства его могут меняться от точки к точке. Очевидно, что потенциал напряжений или упругая энергия изотропного тела не должен меняться при измененпи осей координат, поэтому он должен выражаться через инварианты тензора деформаций. Единственная однородная квадратичная форма, составленная из этих инвариантов, зависит от двух констант и выражается следующим образом  [c.239]

Техническая теория продольных колебаний стержней. Под стержнем понимают одномерное упругое тело (два размера малы по сравнению с третьим), обладающее конечной жесткостью на растяжение, кручение и изгиб. Пусть стержень, отнесенный к прямоугольной декартовой системе координат Oxyz, совершает продольные колебания. Параметры стержня являются функциями только одной продольной координаты X. По гипотезе плоских сечений любые точки, лежащие в плоскости, перпендикулярной к оси стержня, имеют одинаковые перемещения =-- и (х), 112= Н = 0. Все компоненты тензоров напряжений и деформаций, кроме Оц и считают пренебрежимо малыми. Выражения для потенциальной энергии деформации, кинетической энергии и потенциала внешних сил имеют вид  [c.146]


Конечно, Герц не имел, как имели мы здесь, уже готового предположения о распределении давления по поверхности плитки, при знании которого ему оставалось бы только доказать правильность решения. Он по этому вопросу не делал никаких предварительных предположений и нашел закон распределения давлений лишь в результате своих исследований. Герц пришел к своему результату, опираясь на то, что решение основных уравнений упругого равновесия может быть получено при помощи теории потенциала притягивающих или отталкивающих масс. Если представить себе, что между обоими телами помещен трехосный эллипсоид равномерной плотности, у которого ось, идущая в направлении нормали касательной плоскости, в сравнении с осями, расположенными в площадке сжатия, бесконечно мала, то для сил притяжения масс этого эллипсоида, подчиняющихся закону тяготения Ньютона, можно вычислить потенциал в виде функции от координат ауфпункта ) и для такого потенциала уже давно была выведена готовая формула. Как можно показать, не только сами составляющие сил притяжения, вычисляемые по соответствующим формулам, но и функции, получаемые из них путем диференцирования или интегрирования по координатам, будут представлять решения основных уравнений теории упругости, и вся задача заключается лишь в том, чтобы составить из них такое решение, которое удовлетворяло бы одновременно всем граничным условиям, относящимся к напряжениям и деформациям. Это и удалось сделать Герцу. Кто захотел бы ознакомиться с теорией сжатия упругих тел по оригинальным работам Герца, тот должен иметь соответствующие предварительные сведения из теории потенциала.  [c.230]

Теория звуковых волн ) приводит к предположению, что, когда тело соверииет малые колебания, то эти движeниrf столь быстры, что ни в одной части тела не происходит сколько-нибудь заметного поглощения или отдачи тепла. В этом случае также существует упругий потенциал и если мы предположим, что закон Гука имеет место, то эта функция представляет собой однородный многочлен второго порядка относительно компонентов деформации. Если из уравнений движения (15) 54 исключить компоненты напряжения, то эти уравнения обращаются в линейные относительно проекций смещения. Благодаря линейности этих уравнений и той фбрме, в которой в них входит время, они допускают решения, которые представляют изохронные колебания. Способность всех твердых тел совершать малые изохронные колебания была отмечена Стоксом ) в качестве бесспорного доказательства истинности закона Гука для малых деформаций, которые здесь имеют место.  [c.109]

Наконец, если тело изотропное, то упругий потенциал должен быть постоянным при произвольном повороте осей координат. С другой стороны, тензор напряжений или тензор деформаций имеет три независимых инварианта первой, второй и третьей степени относительно компонентов тензоров напряжений и деформаций. Поэтому упругий потенциал должен быть выражен через инвариан- ты тензора напряжений, если упругий потенциал представлен компонентами тензора напряжений, или через инварианты тензора де-. формаций, если упругий потенциал представлен компонентами тензора деформаций (4.28). В силу того, что упругий потенциал является однородной функцией второй степени, он может содержать только первый инвариант во второй степени и второй инвариант в первой степени, т. е.  [c.68]

При микроскопическом анализе указанного типа неустойчивости тела под нагрузкой в простейшем случае рассматривается "переход" закрепленных дислокаций в подвижные, обусловленный действием внешних сдвиговых напряжений [146]. Процесс раскрепощения дислокаций сказывается на макроскопических свойствах кристалла, а именно на его упругих свойствах. Считая, что в данном случае происходит фазовый переход II рода, в качестве параметра порядка выбирают число подвижных дислокаций п. В упругой области (высокосимметричная фаза) и = О, в то время как в пластической (низкосимметричная) л > 0. Тогда термодинамический потенциал тела с п подвижными дислокациями записывается в виде [146]  [c.88]


Здесь Л1у — единичная нормаль к контуру 2, а/у - напряжения, щ - перемещения, и — упругий потенциал единицы объема. Уравнение (6.14) справедливо также для любых неупругих тел (упруго-пластических, вязкоупругих и др.) при квазистационарном движении точки О вдоль оси п со скоростью, значительно меньшей скорости звука в полосе при этом под Uпонимается удельная энергия деформаций.  [c.269]

Для уяснения основ теории пластичности, а также при решении практических задач большую роль играют вариационные принципы теории пластичности. С их помощью можно описать напряженное и деформированное состояние тела в форме требования минимума некоторого функционала при некоторых дополнительных условиях. В качестве последних используются не все уравнения и неравенства задачи, а лишь часть их. Напомним, что вариационные принципы для рассеивающих сред, в которых варьируются кинематически допустимые поля деформаций и статически допустимые поля напряжений, выраженные через упругий потенциал и потенциал рассеивания, были введены еш е Г. Гельмгольцем и Ф. Энгессе-ром. Для идеально пластического тела из принципа Гельмгольца следует, 265 что действительное поле напряжений обращает в максимум мощность поверхностных сил Но поскольку, согласно закону сохранения энергии, эта мощность равна мощности внутренних сил и сил инерции, то и эта последняя должна стремиться к максимуму. Обобщение принципов Гельмгольца и Энгессера на вязко-пластическую среду получили А. А. Ильюшин , а позднее Дж. Г. Олдройд и В. Прагер.  [c.265]

В качестве уравнения состояния могут быть использованы соотношения между главными степенями деформации (г = 1, 2, 3) и главными напряжениями О/, следующие из упругого потенциала Муни — Ривлина (3.1.5) и общих соотношений (3.1.9). При этом необходимо иметь в виду, что Я,- являются функциями координат, изменяющимися от точки к точке тела.  [c.123]

Задача об определении напряжений и деформаций в упругом твердом теле под действием данных массовых сил и при заданных поверхностных силах, или при условии, что под действием этих последних поверхность тела принимает заданную форму, приводится к аналитической задаче об определении функций, выражающих проекции смещения. Эти функции должны удовлетворять всем диференциальным уравнениям равновесия в каждой точке внутри тела, а также некоторым условиям на его поверхности. Методы, предложенные для интегрирования этих уравнений, распадаются на два класса. Методы одного из этих дбух классов состоят в том, что сначала разыскиваются частные решения для того чтобы удовлетворить граничным условиям, решение представляют в виде конечного или бесконечного ряда, состоящего из частных решений. Частные решения обычно могут быть выражены через гармонические функции. Этот метод решения можно рассматривать, как обобщение разложения по сферическим функциям или обобщение тригонометрических рядов. Методы второго класса состоят в том, что искомую величину выражают в виде определенного интеграла, элементы которого имеют особые точки, распределенные по поверхности или объему, тот тип решения является обобщением методов, которые Грин ввел в теорию потенциала. К моменту открытия общих уравнений теории упругости, метод рядов был уже применен к астрономическим, акустический проблемам и к проблемам теплопроводности ), а метод решений, имеющих особые точки, еще не был изобретен ). Ламе и Клапейрон ) первые применили метод разложения в ряд к проблемам равновесия упругих твердых тел. Они рассматривали случай тела, ограниченного бесконечной плоскбстЬю и находящегося под давлением, распределенным по какому-либо вакону. Позже Ламе °) рассматривал проблему тела, ограниченного сферической поверхностью и деформируемого данными повер ностными силами. Задача а распределении напряжений в полупространстве, ограниченном плоскостью, в основном совпадает с проблемой передачи внутрь тела действия силы, при-  [c.28]


Смотреть страницы где упоминается термин Упругое тело, потенциал напряжений точке : [c.261]    [c.112]    [c.669]    [c.174]   
Теория звука Т.2 (1955) -- [ c.410 ]



ПОИСК



Напряжения упругие

Потенциал напряжений

Потенциал упругий

Тела Потенциал упругий

Упругие тела

Упругое тело, потенциал напряжений

Упругость напряжение



© 2025 Mash-xxl.info Реклама на сайте