Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура кристаллического тела

В вопросах, связанных с объяснением процессов деформирования и процессов нарушения структурного строения, приводящих к микроразрушениям и разрушению тел на части (собственно разрушению), механика деформируемого твердого тела опирается на достижения физики твердого тела. Это прежде всего использование представлений о различных видах межатомного взаимодействия, о нарушениях регулярной структуры кристаллических тел в виде дислокаций, вакансий, внедрений и законах их движения под действием приложенных сил.  [c.6]


Для теплонапряженных элементов конструкций характерны металлы и сплавы, которые являются поликристаллическими материалами, состоящими из кристаллических зерен. Поэтому в этой главе кратко изложены используемые в дальнейшем основные физические представления о структуре кристаллических тел и микромеханизме их деформирования и разрушения.  [c.54]

За последние 30 лет существенно уточнены физические представления о реальной структуре кристаллических тел. Оказалось, что расположение атомов в кристаллах отличается от идеальной схемы — кристаллической решетки.  [c.415]

В жидкостях перенос тепла теплопроводностью происходит по типу распространения продольных колебаний аналогично распространению звука. Поэтому коэффициенты теплопроводности жидкостей больше коэффициентов теплопроводности газов. Молекулярная структура кристаллических тел способствует переносу тепла.  [c.126]

Точечные дефекты образуются в процессе кристаллизации или затем в результате воздействия внешних сил. В результате внутренняя структура кристаллических тел может приобрести существенные изменения. При этом могут появляться дефекты в виде дырки I (рис. 3.9), когда в одном из мест кристаллической решетки отсутствует тот или иной атом дефект внедрения 2, когда одна из частиц кристаллической решетки застревает в ее междоузлие дефект замещения 3, когда необходимый вид частицы решетки случайно заполняется частицей совершенно иного сорта. Каждый из этих дефектов вносит дополнительные напряжения в кристаллическую решетку твердого тела и уменьшает его прочность.  [c.67]

Границы блоков представляют собой области с нарушенными структурами, а следовательно, с характером взаимодействия между частицами. Под действием внешних сил в структуре кристаллических тел могут произойти смещения частиц, приводящие к нарушениям в их строении. Геометрические формы линейных дефектов очень сложные. Однако предельные их случаи - краевая и винтовая - могут быть представлены в виде простых схем (рис. 3.10).  [c.67]

Структура кристаллического тела, 646,648.  [c.673]

Пренебрегать атомной структурой твердого тела нельзя при рассмотрении теплового движения, в нем. Тепловое движение атомов кристаллической решетки представляет собой быстрые нерегулярные колебания атомов около положений равновесия. При этом смежные атомы могут колебаться с различными амплитудами и фазами и часто могут двигаться навстречу друг другу. А это значит, что в спектре  [c.696]


Рассмотренная в предыдущей главе зонная теория твердых тел в настоящее время является основой объяснения различных физических свойств и генезиса атомно-кристаллической структуры твердых тел. Цель данной главы — показать возможности зонной теории на некоторых характерных примерах.  [c.87]

Если условия равновесия выполнены в некоторой области пространства, I о они должны быть выполнены и в других областях пространства и, следовательно, должны обусловить аналогичное расположение молекул в другой области пространства. Это означает, что взаимное расположение молекул повторяется при переходе из одних областей пространства в другие, т.е. возникает периодическая структура твердых тел. Она реализуется в виде кристаллической решетки, а сами твердь[е тела являются кристаллами.  [c.332]

Структура твердых тел, описание кристаллических решеток и другие аналогичные вопросы достаточно подробно излагаются в курсе молекулярной физики. Там же описаны механические и тепловые свойства твердых тел. В этой книге рассмотрены главным образом электронные свойства твердых тел. Но прежде необходимо проанализировать типы связи атомов и молекул в кристалле, которые обеспечивают устойчивое существование кристаллической решетки.  [c.332]

В первом приближении кристаллическое тело заменяется его моделью или расчетной схемой в виде идеального кристаллического тела. Строение идеальных кристаллических тел отличается строгой упорядоченностью расположения атомов, образующих кристаллические решетки. Наименьшая периодически повторяющаяся часть кристаллической решетки называется элементарной ячейкой. Простейшую кристаллическую ячейку можно представить в виде параллелепипеда со сторонами а, Ь, с и углами при вершинах а, р, у, как показано на рис. 7.1. В вершинах этого параллелепипеда находятся атомы вещества. Совместив ряд таких элементарных ячеек, получим кристаллическую структуру, изображенную на рис. 7.2, с размерами ka, mb, пс. При этом положение любого атома определяется в косоугольных осях Оху г вектором  [c.127]

Механическая обработка материалов неизбежно вызывает упругую и пластическую деформации поверхностных слоев. Структурные особенности твердых тел хороню описываются теорией дислокаций. В соответствии с этой теорией структура любого кристаллического тела представляет собой сложную систему блоков, фрагментов зерен и выходов отдельных групп дислокаций. Дислокационная структура конкретного кристаллического тела на его поверхности реализуется в виде тонкой системы впадин и выступов.  [c.46]

Кристаллические тела не идеальны в них всегда в огромном количестве суш,ествуют нарушения структуры, называемые несовершенствами (или дефектами). В силу ряда- причин отдельные кристаллы в реальном металле не имеют возможности принять правильную форму. Кристаллы неправильной формы называются зернами или кристаллитами. Их размер от 0,1 до 10 мкм. Напомним, что разрешающая способность микроскопа равна длине волны све-  [c.31]

Что касается дислокационной теории, то в настоящее время здесь суш,ествуют два основных направления. Первое заключается в детальном изучении свойств отдельных дислокаций и их поведения в тех или иных условиях. Последовательное применение результатов, полученных этим методом, для количественного расчета свойств поликристалла затруднено сложностью дислокационной структуры. Очевидно поэтому все большее внимание привлекает второе направление дислокационной теории, которое оперирует среднестатистическими характеристиками дислокационного ансамбля и пытается установить непосредственную связь этих характеристик с макроскопическими параметрами кристаллических тел. Основы второго направления были заложены в известных работах  [c.151]

Возьмем металл. В начале нашего столетия, когда была открыта и научно обоснована структура твердых тел и найдено расположение атомов в кристаллической решетке металла, физики определили его теоретическую прочность. А когда стали сопоставлять полученные величины с практическими данными, то оказалось, что теоретическая прочность в тысячи раз больше той, которую мы ныне считаем предельным достижением и во всех учебниках называем пределом прочности.  [c.142]


Теория дислокаций впервые объяснила причину огромного различия теоретически рассчитанной прочности кристаллов с совершенной структурой и экспериментально определяемой прочности дефектных кристаллов. И. А. Одингом еще в конце 50-х годов была предложена гипотетическая зависимость прочности кристаллов от плотности дефектов, в частности дислокаций в кристаллах, в соответствии с которой один из путей повышения прочности, сопротивления сдвигу состоит в увеличении плотности дефектов решетки и их оптимального распределения в объеме материалов. Поскольку облучение быстрыми частицами является мощным способом создания целого комплекса дефектов решетки, оно и должно оказывать существенное влияние на механические свойства кристаллических тел.  [c.60]

Влияние температуры облучения на предел текучести. В процессах закрепления дислокаций, образования вторичных дефектов и частиц выделений определяющую роль играет термическая диффузия. Поэтому структура и свойства кристаллических тел должны зависеть от температуры облучения. Однако на число и вид первичных дефектов, образующихся при бомбардировке, она не влияет. В значительной степени от температуры облучения зависит степень сохранности первичных дефектов в решетке.  [c.77]

Рентгеновский структурный анализ позволяет экспериментальным путём находить распределение электронной плотности в кристаллических и аморфных, в жидких и газообразных телах. В применении к кристаллическим телам структурный анализ позволяет определять кристаллическую структуру, т. е. координаты центров тяжести атомов (или ионов) в кристаллической решётке.  [c.164]

Структуры кристаллических и аморфных твердых тел имеют существенное различие. В отличие от кристаллических в структурах  [c.29]

Специфика структуры аморфных тел оставляет проблематичным вопрос о применимости к ним фононной теории теплопереноса. Вместе с тем при отсутствии надежных модельных схем для аморфных тел имеет место удовлетворительное согласование положений фононной теории теплопереноса с экспериментальными данными, что позволяет основываться на представлениях, вытекающих из этой теории. За счет неупорядоченности структуры аморфные тела имеют ограниченную длину свободного пробега и вследствие этого значительное рассеяние фононов. Отсюда абсолютное значение теплопроводности аморфных тел значительно меньше, чем у кристаллических.  [c.30]

Специфика структуры аморфного тела позволяет предполагать, что длина свободного пробега близка к межатомным расстояниям и практически не зависит от температуры. Экспериментально установлено, что с повышением температуры плотность аморфного тела уменьшается, скорость звука и удельная теплоемкость возрастают, причем удельная теплоемкость растет особенно интенсивно. Таким образом, согласно фононной теории теплопереноса см. формулу (1-29)] теплопроводность аморфного твердого тела при повышении температуры должна возрастать, что экспериментально подтверждается результатами работ [Л. 20, 21]. Реальным неметаллическим твердым телам присуще чередование областей с ближним и дальним порядком в расположении структурных элементов. Теплопроводность таких систем определяется соотношением аморфных и кристаллических структурных элементов. Установлено, что в случае преобразования кристаллической компоненты в диапазоне средних температур теплопроводность уменьшается с повышением температуры, и наоборот. При определенном соотношении компонент температурная зависимость теплопроводности носит постоянный характер в довольно широком диапазоне температур.  [c.30]

Физические представления о структуре кристаллических тел и микромеханизме их деформирования позволяют подойти к построению математической модели неупругого деформирования поликристаллического материала. Как и при анализе осредненных характеристик поликристалла (см. 2.4), рассматриваемый объем материала представим в виде совокупности большого числа хаотически ориентированных кристаллических зерен. Ориентация кристаллографических микроосей зерен k = , 2, 3 относительно макроосей Xi, i = , 2, 3 поликристалла задана угловыми координатами Эйлера 9, oj) и ф (см, рис. 2.5) и для каждого зерна может быть представлена матрицей (2.19) с компонентами определяемыми согласно (2.21). Рассмотрим сравнительно малые неупругие деформации, так что ориентацию зерен в процессе деформирования можно принять неизменной.  [c.97]

Важное значение для объяснения явлений диффузии в металлах имеют представления, развитые П. А. Ребиндером, В. И. Лихт-маном [10—12] и др., о реальном твердом теле. Согласно этим представлениям для кинетики диффузионных процессов существенную роль играют микродефекты, имеющиеся в структуре кристаллического тела или возникающие при деформации.  [c.24]

При переходе непосредственно от однородного распределения свойств в объемной части кристаллического тела (D =3) наблюдается массовый выход дислокаций и формируется первая подповерхностная зона I с повышекной плотностью данных линейных дефектов (рис. 6.16). В этой зоне осуществляется самоорганизация дислокационных скоплений в замкнутые ячеистые, спиральиыс или другие структуры. Сжимающие напряжения в ней обеспечивают сохранение форл ы и свойств граничащей с ней объемной фазы, которая простирается вглубь объекта. В частности, увеличение плотности дислокаций способствует упрочнению материала, что используется в некоторых технологических методах поверхностной обработки сталей.  [c.300]

Указанным критериям отвечает новый метод снятия остаточных напряжений физические основы которого можно сформулировать сле> дующим образом. Как показано при теоретическом исследовании, каждому кристаллическому материалу соответствует вполне определенный дискретный спектр собственных частот колебаний атомов в решетке. Последний определяется типом дислокаций, характерных для данной структуры твердого тела, и может быть, в принципе, рассчи> тан для любого материала. Если подвести к кристаллу анергию, равную величине Wi = hv,, (Wi — пороговый уровень энергии, h — постоянная Планка, — частота колебаний 1-моды в спектре), то эта энергия избирательно поглотится кристаллической решеткой, что приведет к резкому повышению амплитуды атомных колебаний i-моды.  [c.149]


Для определения атомной структуры твердых тел используют дифракционные методы. Классификация этих методов дается по виду используемого излучения. Различают методы рентгенографии, электронографии и нейтронографии. Все эти методы основаны на общих принципах дифракции волн или частиц при прохождении через кристаллическое вещество, являющееся для них своеобраз-34  [c.34]

Иной характер имеет различие между газообразным и красталлическим состояниями вещества. Кристаллическое состояние есть анизотропная фаза вещества, а газообразное состояние представляет собой изотропную фазу его. Поэтому непрерывный переход из твердого состояния в газообразное, а также в жидкое при высоких температурах (например, больших критической) едва ли возможен, соответственно чему кривая фазового равновесия между кристаллической и жидкой фазами не имеет конца и, в частности, критической точки фазового превращения кристаллическая фаза — жидкость, ло-видимому, не существует. Вместе. с тем нужно иметь в 1виду, что при температуре вблизи точки кристаллизации в свойствах кристаллической и жидкой фаз имеются сходные черты. Вообще при температурах, близких к температуре плавления, жидкость по своим свойствам гораздо ближе к твердому состоянию, чем к газообразному. Подтверждением этого является наличие у жидкостей вблизи точки плавления некоторого порядка в расположении молекул, вследствие чего можно говорить условно о квазикристаллической структуре жидкости. Близость свойств жидкого и твердого состояний хорошо видна из табл. 4-2, в которой приведены значения молярной теплоемкости ряда жидкостей (преимущественно расплавленных металлов, представляющих собой с точки зрения молекулярной структуры простейшие жидкости). У жидкостей молярная теплоемкость заключена между 27,6 и 36,9 кдж/кмоль град, тогда как у кристаллических тел она составляет согласно закону Дюлонга —Пти 25 кдж1кмоль град. Таким образом, молярная теплоемкость жидкостей практически такая же, как у кристаллических тел. Это означает, что частицы жидкости подобно атомам или ионам кристаллической решетки совершают периодические колебательные движения, причем в жидкостях центр колебаний может вследствие теплового движения перемещаться, в пространстве. Последнее объясняет некоторое превышение теплоемкости жидкостей по сравнению с твердым состоянием.  [c.125]

Анализ данного уравнения начнем с экстремального случая, когда структура металла близка к идеальному кристаллическому строению. Прочность такого металла, примером которого являются нитевидные кристаллы (усы), есть максимально возможная для кристаллического тела, как такового, и близка к теоретической прочности. Малое количество несовершенств кристаллического строения приводит к тому, что при нагружении такою металла практически весь его объем будет равномерно поглонщть энергию искажен.1я и к определенному моменту каждый единичный объем во всем кристалле будет насыщен  [c.20]

Уже при нагреве до температуры 50 °С каучук размягчается п становится липким, а при низких температурах он хрупок. Каучук растворяется в углеводородах и сероуглероде. Раствор каучука в бензине, называемый обычно резиновым клеем, может применяться для прочного склеивания каучука и резины. Высокая эластичность каучука связана с зигзагообразной, шарнирной формой цепочек его молекул при действии на каучук растягивающего усилия ферма цепочки приближается к прямолинейной. Каучук — аморфное вещество, но в растянутом состоянии он дает рентгенограммы, характерные для кристаллических тел, имеющих упорядоченнее расположение молекул в пространстве. После снятия растягивающего усилия каучук вновь приобретает свойства аморфного тела. Из-за малой стойкости к действию как повышенных, так и пониженных температур, а также растворителей чистый каучук для пзгогпвлекия электрической изоляции не употребляют. Для устранения указанных выше недостатков каучук подвергают так называемой вулканизации, т. е. нагреву после введения в него серы. При вулкгишзации происходит частичный разрыв двойных связей цепочечных молекул и сшивание цепочек через атомы —S— с образованием пространственной структуры.  [c.156]

Предпринимались разные попытки выявить характерные атомные конфигурации в зернограничной структуре, но пути решения этого вопроса удалось найти используя результаты геометрического анализа [164] и моделирования на ЭВМ [165-167], которые позволили выявить те кирпичики , из которых построена любая граница. Оказалось, что существует строго ограниченный набор координационных многогранников, по вершинам которых могут располагаться атомы в границе зерен. Эти многогранники совпадают с берналовскими полиэдрами, предложенными для описания структуры жидкостей и аморфных тел. В работе [168] показано, что многогранники можно разбить на тетраэдры и октаэдры, т. в. на основные элементы, характерные для кристаллической структуры металлов, однако искажения этих тетраэдров и октаэдров по сравнению с правильными формами довольно велики. В отличие от структуры аморфных тел, где атомные полиэдры расположены неупорядочено, в границе полиэдры располагаются в один слой, для них имеются жесткие граничные условия, обусловленные периодичностью кристаллов по обе стороны границы, что приводит к строго упорядоченному построению атомных групп в структуре границ. Упорядоченность структуры характерна для всех границ зерен.  [c.89]

В стекле атомы расположены более беспорядочно по отношению друг к другу, чем в поликристалличе-ских металлах. Оно обладает жесткостью твердых кристаллических тел, но не имеет правильной кристаллической структуры. Изучение стекол обнаруживает микронеоднородности их структуры. В стекле нет полного хаоса и в то же врегля нет решетки, которая сопутствует кристаллическим веществам. Существует несколько гипотез строения стекла. Так, ионная теория предполагает ионный тип связей в стекле, в то время как полимерная теория исходит из преимущественно ковалентного характера химических связей. Ученые ищут концепцию, пригодную для всех видов стекла. Что же касается механизма деформации сдвига, то в стекле он диффузионный, в отличие от реальных кристаллов, где он дислокационный.  [c.96]

Зависимость сопротивления деформированию и разрушению от числа искажений в кристаллической решетке. Атомная решетка реального кристаллического тела имеет разнообразные искажения (дефекты), оказывающие влияние на его прочность. К таким дефектам кристаллического строения металлов и сплавов относятся вакансии, атомы примесей, дислокации, границы зерен и блоков мозаики и микродефекты структуры. Решающая роль в процессах пластической деформацтг тг разрушештя--ттртгадлежит ди юка- -циям.  [c.9]

Способность кристаллических тел к атермической пластичности не исключает у них неупругости, связанной с тепловым движением элементов структуры. Механизм такой неупругости проявляется при достаточно высоких температурах (порядка температуры рекристаллизации данного материала) или при весьма длительных воздействиях. Обусловленную ими неупругость принято называть ползучестью, так что термин пластичность будет применяться только для обозначения неупругости, носящей атер-мический характер.  [c.726]

В современной физике радиационных повреждений существует два подхода к решению данной задачи. Первый — моделирование каскадов ПБА на ЭВМ. Второй — кинетический подход к описанию уравнений, заключающийся в составлении и решении кинетических уравнений для пространственно-энергетических функций распределения всех сортов частиц, вовлеченных в каскад. Каждый из этих подходов имеет свои достоинства и недостатки. Так, в первом подходе точно учитывается структура твердого тела, однако его возможности снижаются с повышением энергии сторонних частиц, вызывающих каскад. Кроме того, при этом практически неразрешимы такие проблемы, как проблема учета непарности взаимодействия и взаимодействия ПВА с электронами среды. Второй подход содержит возможности более детального учета коррелированных взаимодействий сторонних частиц и ПВА с атомами среды и электронами и не имеет органичений по энергиям. Однако в нем не учитывается кристаллическая структура твердых тел, что сильно снижает его точность при описании конечной стадии каскада, когда энергия большинства ПВА в каскаде становится меньше энергии порядка нескольких килоэлектронвольт.  [c.21]


Изменение механических свойств облученных и облучаемых материалов зависит в основном от характера взаимодействия дислокационной структуры со сложными комплексами радиационных дефектов. Процессы образования и коалесценции радиационных дефектов существенно зависят от условий облучения и структурного состояния металлов. Поэтому для установления общих закономерностей изменения механических свойств и прогнозирования поведения материалов и конструкций при облучении необходимо прежде всего изучить процессы возникновения и эволюции дефектной структуры облучаемых кристаллических тел. Это чрезвычайно трудная задача, поскольку еще нет единой микроскопической теории механических свойств кристаллических тел в обычных условиях деформации. Предложенные механизмы движения дислокаций в поле дефектов кристаллической решетки являются очень сложными, неуни-версальными и еще не полностью понятными.  [c.54]

Сложность структуры кристаллического твердого тела практически затрудняет возможность произвести оперативную оценку влияния различных факторов на общее тепловое сопротивление. Тем не менее добавочное термическое сопротивление за счет химических примесей и других ярко выраженных дефектов считается в первом приближении постоянным в области высоких температур и линейно зависящим от температуры в области изких температур.  [c.29]

Отметим, что в высокопористых материалах (пористость П/5 95%), к которым относятся вещества со сверхнизкой теплопроводностью, не может быть идеальной упорядоченной структуры типа кубической, гексагональной (П 26—40%), характерной для кристаллов. Модель кристаллического тела, которая наиболее часто используется при анализе теплопроводности в дисперсных материалах [Л. 122], является теоретическим пределом для низкопористых дисперсных веществ. Для расчета переноса в высокопористых материалах зернистой структуры нами "будет использована модель сжатых газов, в которой среднее расстояние между частицами соизмеримо с их размером, а сами частицы расположены в пространстве хаотически.  [c.155]

Диффузионное спекание. Диффузионный механизм переноса вещества наблюдается три спекании большинства кристаллических фаз в отсутствии жидкой фазы. Происходит, как принято называть, твердофазовое спекание. Диффузионный механизм спекания самым тесным образом связан со структурой и н ичием дефектов в кристаллической решетке спекаемого материала. Чем больше дефектов имеют кристаллическая решетка и поверхность спекаемого кристалла, тем больше его поверхностная энергия. Реальные тонкоизмельченные кристаллические тела всегда различаются между собой величиной свободной энергии. При соприкосновении мельчайших кристаллических частиц в процессе нагревания происходит перенос вещества с большей свободной энергией в местах. контакта в направлении частицы с меньшей свободной энергией, так как по законам термодинамики всякая система стремится к выравниванию уровней энергии. Таким образом, движущей силой и энергетическим источником переноса вещества диффузией является разность значений свободной энергии в месте контакта вещества.  [c.70]


Смотреть страницы где упоминается термин Структура кристаллического тела : [c.117]    [c.508]    [c.355]    [c.590]    [c.271]    [c.6]    [c.155]    [c.177]    [c.87]    [c.55]    [c.545]   
Математическая теория упругости (1935) -- [ c.646 , c.648 ]



ПОИСК



411—416 — Структура кристаллическая

Кристаллические

Кристаллическое тело

Рассеяние нейтронов реальными кристаллическими твердыми телами кристаллы с кубической структурой



© 2025 Mash-xxl.info Реклама на сайте