Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стали коррозионно-стойкие аустенитные - Свойства

Шкала общей коррозионной стойкости, свойства 233, 234 Стали коррозионно-стойкие аустенитно-мартенситные  [c.771]

Стали коррозионно-стойкие аустенитные - Свойства 238  [c.771]

Обозначение электродов для сварки высоколегированных сталей с особыми свойствами. ГОСТ 10052—75 устанавливает 49 типов электродов для сварки хромистых и хромоникелевых сталей, коррозионно-стойких, жаропрочных и жаростойких высоколегированных сталей мартенситно-ферритного, ферритного, аустенит-но-ферритного и аустенитного классов.  [c.73]


Обозначение электродов для сварки высоколегированных сталей с особыми свойствами. Электроды для сварки высоколегированных сталей с особыми свойствами должны удовлетворять требованиям ГОСТ 10052-75. Большое разнообразие служебного назначения этих сталей определяет и большой типаж электродов для их сварки. Стандартом предусмотрено 49 типов электродов для сварки хромистых и хромоникелевых сталей, коррозионно-стойких, жаропрочных и жаростойких высоколегированных сталей мартенситно-ферритного, ферритного, ау-стенитно-ферритного и аустенитного классов.  [c.43]

Аустенитные стали. В криогенной технике основным конструкционным материалом являются коррозионно-стойкие аустенитные стали. Эти стали отличаются от хладостойких сплавов и сталей особо высокими пластичностью и вязкостью, их применяют при температурах (до -269 °С). Благодаря технологическим свойствам из этих сталей можно изготовлять криогенное оборудование с применением любых способов холодной обработки давлением и сварки.  [c.128]

Аустенитные стали. В отличие от ферритных и мартенситных. хромистых сталей аустенитные коррозионно-стойкие стали обладают более высокими технологическими свойствами. Основными легирующими элементами являются хром и никель, причем никель полностью или частично может быть заменен марганцем. Оба легирующих элемента являются аустенитообразующими. Дополнительное повышение коррозионной стойкости достигается путем введения добавок молибдена и в некоторых случаях—меди.  [c.33]

Хром. Данные о его влиянии на КР аустенитных коррозионно-стойких сталей противоречивы. По-видимому, это связано с тем, что увеличение содержания хрома приводит, с одной стороны, к улучшению пассивирующих свойств, а следовательно, к повыщению стойкости к КР, с другой — к повышению электрохимической активности сталей, а также к снижению энергии дефектов упаковки к плоскостному расположению дислокаций, способствующим более быстрому возникновению и развитию трещин КР.  [c.72]

В ряде случаев устойчивость конструкций против КР можно увеличить, применяя вместо аустенитных ферритные коррозионно-стойкие стали. Это возможно в условиях, где не проявляются отрицательные свойства этих сталей (склонность к охрупчиванию, пониженная общая коррозионная стойкость). При подборе сталей необходим как строго дифференцированный подход к составу с точки зрения влияния легирующих элементов, так и к их взаимному влиянию друг на друга в комплексе в отношении к КР.  [c.76]


Аустенитные коррозионно-стойкие стали недостаточно износостойки, склонны к задирам и схватыванию при трении. Большинство способов упрочнения их поверхностных слоев не приводит к существенному улучшению антифрикционных свойств или снижает коррозионную стойкость. Стали аустенитного класса в отличие от углеродистых сталей не подвержены омеднению по способу контактного вытеснения меди из растворов ее солей без специальной химической обработки (травление в щелочном растворе с последующей кислотной обработкой). Однако омеднение поверхностей трения этих сталей становится возможным в процессе трения, т. е. в динамических условиях, которые способствуют возникновению термо-ЭДС. Для достижения этого в воду, служащую смазкой химического аппарата, добавляют водные растворы солей меди. В табл. 33 приведены результаты испытаний колец торцового уплотнения на различных режимах работы со смазкой дистиллированной водой и раствором сернокислой меди.  [c.179]

Кроме рассмотренных пружинных сталей общего назначения в машиностроении широко применяют пружинные стали и сплавы специального назначения. Кроме высоких механических свойств и сопротивления релаксации напряжений они должны обладать хорошей коррозионной стойкостью, немагнитностью, теплостойкостью и другими особыми свойствами. К этим сталям относятся высоколегированные мартенситные (высокохромистые коррозионно-стойкие стали), мартенситно-стареющие, аустенитные (коррозионно-стойкие, немагнитные и жаропрочные) стали и др.  [c.288]

Высоколегированные аустенитные стали и сплавы обладают комплексом положительных свойств. Поэтому одну и ту же марку стали иногда можно использовать для изготовления изделий различного назначения, например коррозионно-стойких, хладостойких, жаропрочных и т.д. Б связи с этим и требования к свойствам сварных соединений будут раз-  [c.359]

По данным некоторых зарубежных фирм и компаний, гребные винты из аустенитных сталей отличаются высокой коррозионной и эрозионной стойкостью в морской воде при сравнительно высоких окружных скоростях (выше 30 м/с). Так, в США для гребных винтов буксирных судов, плавающих на мелководье (эти условия плавания для гребных винтов считают особенно тяжелыми), применяют аустенитную сталь примерно следующего состава 0,1% С 0,3% Si, 15% Мп 16% Сг 5% Ni [64]. Механические свойства этой стали в литом состоянии = 608 МПа сг = 324 МПа б == 50% НВ 170. Коррозионно-стойкие стали с большим содержанием марганца (до 15%) хорошо сопротивляются гидроабразивному износу и работают в этих условиях сравнительно долго.  [c.14]

В промышленности используют много различных по составу и свойствам сталей аустенитного класса. Большая часть их относится к коррозионно-стойким сталям. Из хромоникелевых сталей этого класса особенно большое распространение получили в СССР и за рубежом стали типа 18-8.  [c.207]

Никель несколько повышает стойкость стали с 18% Сг в активном состоянии. Легирование никелем в количестве 9—12% переводит сталь в аустенитный класс, что имеет принципиально важное значение, так как обеспечивает стали высокую технологичность в сочетании с уникальным комплексом служебных свойств. Это дает возможность использовать стали типа 18-10 в качестве коррозионно-стойких, жаростойких, жаропрочных и криогенных материалов,  [c.67]

Из сталей со специальными свойствами (коррозионно-стойкие, жаропрочные, кислотоупорные, износостойкие) выполняют литые изделия, подвергающиеся воздействию различных сред, высоких температур и нагрузок их относят в основном к ферритному и аустенитному классам.  [c.193]

Коррозионно-стойкие стали, отличающиеся повышенной гомогенностью, находят применение и при криогенных температурах, также создающих опасность хрупких разрушений. К числу основных требований, предъявляемых к сварным соединениям аустенитных сталей криогенного назначения, относят определенный комплекс механических свойств, а именно сочетание высокой исходной прочности (при 20 °С), пластичности, вязкости при температурах до -269 °С и малой чувствительности к концентрации напряжений. При оценке механических свойств важно установить соотношение между характеристиками, используемыми для расчета конструкции, и склонностью материала к концентраторам напряжений или хрупкому разрушению, оцениваемому ударной вязкостью по ГОСТ 9454-78 на трех видах образцов с надрезами радиусом 1,0 мм (K U), 0,25 мм (K V) и с трещиной (КСТ).  [c.59]


При выборе электродов для сварки конструкций из коррозионно-стойких сталей необходимо получить бездефектное соединение, в котором металл шва и ЗТВ удовлетворяет по антикоррозионным свойствам требованиям, предъявляемым к нему условиями эксплуатации конструкции. Соотношение химической прочности ряда композиций представлено на рис. 10.23. Вследствие повышенной склонности аустенитных швов к образованию ГТ, пониженной их коррозионной стойкости, трудности легирования легкоокисляющимися элементами (алюминием, титаном и др.) часто ориентируются на получение швов, по химическому  [c.62]

Влияние кислорода на свойства металла шва при сварке коррозионно-стойких сталей. Повышенная концентрация кислорода в металле швов, выполненных на высоколегированных сталях аустенитно-ферритного класса, приводит к резкому  [c.67]

Высоколегированные стали и сплавы более склонны к образованию трещин, чем низкоуглеродистые. Горячие трещины появляются большей частью в аустенитных сталях, холодные-в закаливающихся сталях мартенситного и мартенситно-ферритного классов. Кроме этого, коррозионно-стойкие стали, не содержащие титана или ниобия или легированные ванадием, при нагревании выше 500°С теряют антикоррозионные свойства по причине выпадения из твердого раствора карбидов хрома и желе-  [c.149]

Наличие фосфора особенно сильно сказывается на механических свойствах стали в области низких температур (явление хладноломкости). Фосфор уменьшает работу распространения трещины и сопротивление металла хрупкому разрушению. Негативное влияние этого элемента тем сильнее, чем выше прочность стали. В состоянии отпускной хрупкости фосфор оказывает еще большее отрицательное воздействие на порог хладноломкости. Фосфор не ухудшает свойств коррозионно-стойких и жаростойких (хромоникелевых) сталей. Однако аустенитные безникелевые стали (Г 13), как и высокопрочные, при повышенной загрязненности фосфором малопригодны для эксплуатации при низких температурах [4, 9].  [c.717]

В настоящее время в различных конструкциях, работающих в агрессивных средах, находят широкое применение коррозионно-стойкие, аустенитно-ферритные стали, состоящие из аустенита и феррита примерно в равных количествах [9]. Учитывая возможность получения двухфазной структуры с содержанием до 50 % аустенита в МСС типа 03Х11Ш0М2Т-ВД, обладающей достаточно высокими механическими свойствами в сравнении с коррозионно-стойкими аустенитно-ферритными сталями, было проведено исследование [44] по качественной оценке склонности к коррозионному разрушению под напряжением (КРН) методом знакопеременной поляризации  [c.176]

Высоколегированные аустенитные стали и сплавы обладают комплексом положительных свойств. Поэтому одну и ту же марку стали иногда можно использовать для изготовления изделий различного назначения, например коррозионно-стойких, хладостой-  [c.291]

Высоколегированные стали по структурным признакам подразделяются на следующие шесть классов мартеиситный, мартепситно-ферритный (не менее 5— 10% феррита), ферритный, аустенитно-мартенситцый, аустенитно-ферритный (феррита более 10 %) и аустенитный. В арматуростроении применяются главным образом стали мартенситного, ферритного и аустенитного классов. Стали аустенитного класса обладают высокими пластическими свойствами, коррозионно-стойки, немагнитны.  [c.27]

Стали аустенитно-мартенситного кло.сса. Особую группу представляют аустенитно-мартенситные коррозионно-стойкие стали, например сталь 09Х15Н8Ю. Эти стали наряду с хорошей устойчивостью против атмосферной коррозии обладают высокими механическими свойствами и хорошо свариваются. Сталь 09X15Н8Ю для повышения механических свойств подвергают закалке от 975°С, после которой структура стали—-неустойчивый аустенит и небольшое количество мартенсита. В этом состоянии сталь обладает достаточно высокой пластичностью и может быть подвергнута пластической деформации и обработке резанием. После закалки сталь обрабатывают холодом в интервале температур от —50 до —75 °С для перевода большей части аустенита ( 80 % ) в мартенсит и подвергают отпуску (старению) при 450—500 °С. При старении из а-твердого раствора (мартенсита) выделяются дисперсные частицы интерметаллидов типа П1дА1. Механические свойства стали после такой обработки приведены в табл. 10.  [c.297]

В отличие от серы селен практически не снижает коррозионных свойств. Его вводят в аустенитную хромоникелевую коррозионно-стойкую сталь. Так, 12Х18Н10Е (ГОСТ 5632-72) содержит 0,15 - 0,30% Se и по обрабатываемости приближается к простой углеродистой стали.  [c.285]

При необходимости снятия напряжений в аппарате из аустенитной стали, содержащей молибден, сваренном стабилизированным электродом, нужно назначить отжиг при температуре выше температуры рекристаллизации с медленным охлаждением в печи режим такого отжига приведен на стр. 672. Следует также отметить, что при термической обработке сварных изделий из коррозионно-стойкой стали значительное влияние на свойства изделия могут оказывать колебания в химическом составе основного металла и металла шва даже в пределах нормы. В связи с этим иногда приходится назначать режим термической обработки, учитывая результаты, полученные при испытании термообработаиных образцов — свидетелей или пробных образцов.  [c.666]

Указанное выше преимущество двухфазных аустенитно-ферритных сталей — возможность повышения содержания хрома — способствует тому, что этот класс коррозионно-стойких сталей продолжает развиваться и совершенствоваться. Если учесть, что двухфазные стали обладают более высокой стойкостью против МКК и коррозионного растрескивания, чем аустенитные стали, можно ожидать, что в ближайшее время в этом классе появятся весьма интересные марки стали, обладающие благоприятным сочетанием прочностных, технологических и-зксплуа-таци01Н1ых свойств.  [c.676]


Легирование аустенитных сталей марганцем находит все большее применение, в том числе и для сталей ответственного назначения — коррозионностойких и жаропрочных. В СССР производится безникелевая коррозионно стойкая сталь, содержащая 14% Сг и 15% Мп [7]. Разрабатываемые в последнее время аустенитные железомарганцевоалюминиевые сплавы типа 9Г28Ю9 легче обычных (на 13—15%), за счет легирования алюминием и обладают высокими механическими свойствами [8].  [c.11]

Введение в высокохромистые (ферритные) стали никеля, азота, хрома способствует расширению области у-фазы. В результате при определенном соотношении содержания хрома и указанных элементов образуется смешанная аустенито-ферритная структура, обладающая рядом преимуществ по сравнению с-ферритной и аустенитной. Это обусловило более широкое применение этих сталей (см. табл. 1). Так, наряду с повышенной общей коррозионной стойкостью, стали почти не склонны к межкристаллитной коррозии и стойки против коррозии под напряжением. Относительное удлинение и ударная вязкость этих сталей, особенно азотосодержащих (Х28АН и др.), заметно выше, чем ферритных. Присутствие азота в стали приводит к измельчению зерна в исходном состоянии и замедлению скорости роста зерен при нагревании. Стали обладают также хорошими литейными свойствами, поэтому их широко применяют для изготовления отливок. Однако эти стали труднее обрабатывать давлением, чем, например, аустенитные.  [c.20]

При переплаве коррозионно-стойкой хромокикелевой аустенитной стали методом ЭЛП стандартные механнческие свойства несколько повышаются, а ударная вязкость значительно возрастает (например, с 47 до 81 Дж/см , а в хромистых сталях она возрастает в несколько раз). При этом наряду со снижением содержания неметаллических включений и газов повышаются технологическая пластичность (горячая) и полируемость сталн.  [c.322]

Стали классифицируют по химпч ескому составу — углеродистые, легированные (низко-, средне- и высоколегированные) структуре — доэвтек1 оидные, эвтектоидные, заэвтектоидные, ледебуритные (карбидные), ферритные, аустенитные, перлитные, мартенситные качеству и способу производства — обыкновенного качества, качественные, высококачественные и особо высококачественные применению — конструкционные (строительные, машиностроительные), инструментальные, стали и сплавы с особыми эксплуатационными свойствами (жаропрочные, магнитные, коррозионно-стойкие), с особыми физиче-СКИЛ1И свойствами.  [c.135]

ГОСТ 10052—75 устанавливает типы и основные требования к электродам для ручной дуговой сварки высоколегированных сталей с особыми свойствами. В нем предусмотрены электроды для сварки коррозионно-стойких, жаропрочных и жаростойких высоколегированных сталей мартенситного, мартенситно-фер-ритного, ферритного, аустенитно-ферритного и аустенитного классов, всего 49 типов. Типы этих электродов обозначаются так же, как теплоустойчивых электродов. Кроме гарантированного химического состава ГОСТ устанавливает особые требования к отдельным группам этих электродов, в частности содержание ферритной фазы в наплавленном металле, отсутствие склонности к межкристаллитной коррозии, максимальную рабочую температуру, при которой регламентированы показатели длительной прочности наплавленного металла, ма1 симальную рабочую температуру сварных соединений, при которой допускается применение э.яектродов при сварке жаропрочных сталей. Все эти показатели в виде цифровых индексов указываются при условном обозначении электродов.  [c.138]

Повышение коррозионной стойкости наблюдается, главным образом, у экономно легированных сталей, когда половина никеля, по сравнению с классическими хромоникелевыми сталями, заменена марганцем и азотом. Комбинация этих элементов в сплаве при содержании хрома 18% позволила получить у стали 1Х18Г8АН5 стабильную аустенитную структуру, и эта сталь оказалась способной заменить в известной мере хромоникелевую сталь. В некоторых средах она оказалась даже более стойкой, чем хромоникелевые стали [23, 75]. По своим механическим свойствам и способности к горячей обработке эта сталь равноценна хромоникелевой стали 1Х18Н9, а в некоторых условиях применения даже лучше. Например, высокая прочность и твердость этой стали дает основание ожидать от нее лучшего сохранения полировки и более высокой сопротивляемости истиранию. Повышенный предел текучести делает возможным снижение веса конструкции применением, например, более тонких листов.  [c.35]

Кремний при содержании его более 2% в аустенитной хромоникелевой стали значительно увеличивает ее коррозионную стойкость в сильноокислительных средах, возможно, вследствие улучшения защитных свойств окисной пленки соединениями типа ЗЮа (рис. 20). Однако установлено, что в сварных соединениях стали, легированной 4—6% 51, происходит избирательная коррозия металла околошовной зоны в окислительных средах в области, ограниченной изотермами 600—900°С. Причем с ростом концентрации кремния и ниобия коррозия возрастает. Установлено, что коррозионное разрушение распространяется по межзеренным границам в результате растворения избыточной фазы, имевшей повышенное содержание кремния, никеля, марганца и пониженное по сравнению с исходным материалом содержание хрома и железа. При содержании кремния в стали менее 1 % он не оказывает влияния на коррозию металла. В целом, в настоящее время, влияние 51 на коррозию коррозионно-стойких сталей в азотной кислоте окончательно не выяснено.  [c.37]

Марганец снижает стойкость стали в окислительных средах, когда его содержание в ней высоко (6—16%). Однако это снижение незначительно (на 10—15%) [73]. При температурах кипения в раствО рах азотной кислоты высоких концентраций сварные швы у сталей с высоким содержанием марганца не стойки. Для получения удовлетворительных свойств коррозионно-стойкие стали не следует легировать марганцем более чем на 13—14%. Марганец не столь эффективный аустенизатор как никель. В связи с этим для получения стабильно-аустенитной структуры в стали с 5—14% Мп необходимо выполнение условия [25] С +N = 0,078 (Сг—12,5).  [c.37]

Все стандартные нержавеющие стали легко поддаются горячей обработке путем ковки, прессования, штамповки или экструзии, хотя эти стали, в особенности сорта, содержащие никель, жестче , чем низколегированные или углеродистые стали. Для сплавов Ре— Сг и Ре—Сг-N1 обычно используют температуры 1100—900° С и 1200—900 С соответственно. Для достижения оптимальных механических свойств, а иногда и коррозионной стойкости, после формовки обычно проводят термическую обработку. Для мартенситных сталей, как правило, применяют нормализацию и отпуск (воздушное охлаждение от температуры аустенитизации, а затем повторный нагрев до определенной температуры ниже точки образования аустеннта), отжиг (охлан дение в печи от температуры аустенитизации) или простой отпуск. Для ферритных сталей обычно применяют нагрев до 750—800° С с последующим воздушным охлаждением, а аустенитные стали чаще всего нагревают до 1000— 1100° С с последующим воздушным охлаждением или закалкой (в зависимости от марки стали и поперечного сечения изделия). При больших сечениях изделий во избежание растрескивания не следует допускать резких изменений температуры в ходе нагрева и охлаждения ферритных сталей, а также мартенситных сталей в закаленном состоянии. Аустенитные стали очень стойки к растрескиванию, но сильные градиенты температур могут вызвать коробление.  [c.28]


С учетом отрицательного влияния кислорода на свойства аустенитных швов для сварки коррозионно-стойких сталей разработаны и применяются три системьг флюсов низкокремнистые. фторилные и высокоосновные.  [c.69]

Изменение свойств сталей при низких температурах при облучении назьшают низкотемпературным радиационным охрупчиванием (НТРО). К НТРО склонны ферритные и ферритно-мартенситные стали и в меньшей степени аустенитные коррозионно-стойкие стали, что связано с особенностями дислокационной структуры и фазовых превращений в феррите. НТРО носит обратимый характер и устраняется кратковременным отжигом при температуре выше 650 °С.  [c.317]

Установлено отрицательное влияние кремния и ванадия в сварочном шве на коррозионную стойкость в окислительных средах сварных соединений из аустенитно-ферритных сталей [4]. Таким образом, при выборе присадочного материала необходимо стремиться обеспечить равенство не только механических свойств шва и основного металла и стойкость шва против межкристаллитной коррозии, но и равенство общей коррозионной стойкости металла всех зон сварного соединения. Необходимо учитывать влияние карбидообразующих элементов (Т1 и МЬ) на свойства швов в соединениях аустенитно-ферритных сталей, так как для обеспечения стойкости против межкристаллитной коррозии при содержании углерода >0,07 % необходимы стабилизаторы (карбидообразующие элементы). Сталь 08Х22Н6Т стойка в азотной кислоте 65 %-ной концентрации до температуры 50 °С, в 56 %-ной до температуры 70 °С, в 30 %-ной до температуры кипения. Сталь 08Х21Н6М2Т стойка в муравьиной кислоте независимо от концентрации при температурах до 60 °С, в 30 %-ной кипящей и в 85°/о-ной фосфорной кислоте при Г 80°С, в 10 %-ной серной кислоте.  [c.290]


Смотреть страницы где упоминается термин Стали коррозионно-стойкие аустенитные - Свойства : [c.483]    [c.682]    [c.213]    [c.95]    [c.294]    [c.50]    [c.474]    [c.429]    [c.240]    [c.314]   
Машиностроение энциклопедия ТомII-2 Стали чугуны РазделII Материалы в машиностроении (2001) -- [ c.238 ]



ПОИСК



118, 119 коррозионно-стойкие

Аустенитные стали

Коррозионные свойства

Стали коррозионно-стойкие

Стойка



© 2025 Mash-xxl.info Реклама на сайте