Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Выбор присадочного материала

Правильный выбор присадочного материала препятствует быстрой коррозии сварного соединения, т. е. образованию микроэлементов. Не следует сваривать тонкий лист с массивной деталью. Коррозионно-стойкие аустенитные стали необходимо приваривать к конструкционным с помощью малоуглеродистого вкладыша, чтобы предупредить их науглероживание (рис. 44).  [c.51]

Ручная сварка сталей и сплавов неплавящимся Электродом 173. Выбор присадочного материала  [c.294]


Выбор присадочного материала  [c.299]

ГАЗОВАЯ СВАРКА ТРУБ Общие предпосылки и выбор присадочного материала  [c.185]

Выбор присадочного материала зависит от условий службы конструкций.  [c.479]

Сварные швы на изделиях допускаются при условии правильного выбора присадочного материала, в котором не должны содержаться примеси, вредные для эмалирования. При сварке требуется особая тщательность работы, так как выплески металла, прожоги и другие дефекты сварки могут вызвать пороки на эмалевом покрытии.  [c.390]

Выбор присадочного материала для ручной сварки сталей н сплавов неплавящимся электродом  [c.1061]

Выбор присадочного материала  [c.1064]

Присадочные материалы (см. 1.4.1) проволока или электроды того же состава, что и основной металл диаметр проволоки от 2 до 6 мм. Выбор присадочного материала производят в зависимости от основного металла, как указано в табл. 1.25.  [c.45]

Выбор присадочного материала производят в зависимости от основного металла  [c.52]

ВЫБОР ПРИСАДОЧНОГО МАТЕРИАЛА В ЗАВИСИМОСТИ ОТ ОСНОВНОГО МАТЕРИАЛА  [c.76]

Необходимость выбора присадочного материала определяется формой соединения. В качестве присадочного материала используют круглые и профильные прутки, присадочные шнуры, полосы и пластинки, соответствующие заводским стандартам изготовителей. Обычно присадочный материал по своему составу полностью совпадает с составом основного материала или близок к нему.  [c.194]

Присадочный материал. Существенное влияние на процесс сварки оказывает выбор присадочного материала. Материал присадочного прутка тот же, из которого изготовлено свариваемое изделие. С помощью пластифицирования стремятся несколько снизить температуру размягчения присадочного материала по сравнению с основным и придать ему большую пластичность.  [c.48]

Кроме влияния температуры и длительности нагрева в области критических температур, влияния перегрева, холодной обработки и химического состава основного материала, у сварных соединений необходимо также исследовать влияние химического состава наплавленного металла шва для правильного выбора присадочного материала.  [c.144]

Технология наплавки должна обеспечивать заданные свойства наплавленного металла, отсутствие в нем недопустимых дефектов и работоспособность упрочняемого изделия в целом. Это достигается выбором присадочного материала, способа, режима, техники наплавки и термообработки. При решении технологических вопросов учитывают материал наплавляемого изделия, его массу, форму и условия работы.  [c.22]

Из анализа показателей свариваемости, приведенной выше, видно, что свариваемость металла зависит от состава металла, его физических свойств, технологии сварки (выбор присадочного материала, режима сварки и др.), конструктивной формы сварного изделия и условий его эксплуатации. Единого показателя свариваемости металлов нет. Свариваемость металлов носит комплексный характер, зависящий от ряда показателей и все же, видимо, зависящая прежде всего от свойств свариваемого металла.  [c.140]


Присадочный материал. Правильность выбора присадочного материала, его диаметра или формы сечения присадочного прутка — основные технологические параметры, определяющие качество сварки и производительность труда.  [c.61]

Высокое качество сварных соединений толщиной 3—5 мм достигается при аргонодуговой сварке неплавящимся электродом [2, 7]. При выборе присадочного материала (электродной  [c.219]

Перечислите несколько наиболее важных свойств для выбора присадочного материала.  [c.40]

Важной задачей является правильный выбор способа сварки в соответствии с назначением, формой и размерами конструкций. Назначение способа сварки в значительной степени определяется свариваемостью, особенно при соединении разнородных материалов, конструктивным оформлением сварных соединений, степенью их ответственности и производительностью процесса. Необходимо также учитывать тип соединений, присадочный материал, приемы и обеспечение удобства выполнения сборочно-сварочных соединений. Эти условия предопределяют механические свойства соединений и допускаемые напряжения, необходимые для прочностных расчетов конструкций. Так, для сварки длинных швов встык более технологично применение дуговой автоматической сварки. Толстостенные элементы соединяют электрошлаковой сваркой. Для сварки внахлест тонколистовых материалов рационально применение контактной сварки. Некоторые виды свариваемых материалов (алюминиевые и титановые сплавы, нержавеющие стали и т. п.) требуют надежной защиты зоны сварки от окисления, т. е. применения аргонно-дуговой, электронно-лучевой и диффузионной сварки. Необходимо также учитывать возможности механизации и автоматизации процесса выбранного способа сварки.  [c.164]

Выбор размеров присадочного материала  [c.304]

Выбор присадочной проволоки зависит главным образом от марки свариваемой стали. В табл. 4-2 приведены данные о применяемых марках присадочного материала и областях их применения.  [c.197]

К сварному шву отдельных деталей и узлов предъявляются высокие требования как в отношении его прочности, так и плотности. Чтобы получить доброкачественное сварное соединение, необходимо правильно подобрать номер наконечника, отрегулировать поступление ацетилена и кислорода в нужном соотношении, выбрать способ перемещения горелки и присадочного материала по Щву. Выбор номера наконечника зависит от толщины свариваемого материала и его химического состава. Так, при сварке стали различной толщины можно руководствоваться данными, приведенными в табл. 24.  [c.302]

Важное условие предупреждения горячих трещин — выбор соответствующего присадочного материала. При сварке аустенитных сплавов стремятся получить наплавленный металл, имеющий в своем составе вторую фазу в виде мелкодисперсных включений феррита, карбидов ниобия, термодинамически устойчивых нитридов типа TiN, тугоплавких оксидов. Легирование сварных швов аустенитных сталей и никелевых сплавов большими количествами молибдена, вольфрама, тантала, при которых подавляется процесс высокотемпературного разрушения, эффективно только при условии жесткого ограничения содержания в сварочной ванне кремния, фосфора, серы, легкоплавких примесей и газов [4, с. 141 5]. Положительные результаты дает рафинирование металла сварочной ванны или модифицирование структуры шва с помощью галоидных или высокоосновных флюсов-шлаков [9, с. 148 и 155].  [c.73]

Окончательный выбор и корректирование состава присадочного материала производят по результатам технологических сварочных проб на горячие трещины, а также по результатам коррозионных и механических испытаний сварных соединений.  [c.73]

Выбор присадочного материала. При сварке двух деформируемых сплавов было опробовано несколько присадочных материалов. При сварке плит сплава 5083-Н321 использовали проволоку сплавов 5183, 5356 и 5556. Сварные соединения, изготовленные с присадкой проволоки сплава 5556, имели более высокую прочность, а с присадкой проволоки 5356 — более высокое отношение а /оо.а-В общем, при использовании всех трех присадочных материалов имеет место очень незначительная разница в свойствах.  [c.188]


Сварка в защитных газах. Высокое качество сварных соединений толщиной 3. .. 5 мм достигается при аргонодуговой сварке неплавящим-ся электродом. При выборе присадочного материала (электродной проволоки) для дуговой сварки в среде защитных газов следует руководствоваться табл. 7.6. Первый слой выполняют без присадки с полным проваром кромок стыка и обратным валиком, второй - с поперечными низкочастотными колебаниями электрода и механической подачей присадочной проволоки. Возможен и третий слой с поперечными колебаниями электрода без присадочной проволоки со стороны обратного формирования на небольшом режиме для обеспечения плавного перехода от шва к основному металлу.  [c.310]

Электроды марок ОЗС-6 МР-3 АНО-4 и другие с рутиловым покрытием, относящиеся к типу Э-46, находят в настоящее время все более широкое применение. По своим характеристикам они во многом превосходят электроды типа Э-42 и полностью заменяют их. Электроды с рутиловым покрытием, в основу обмазки которых входит рутил — двуокись титана ТЮг, отличаются высокими сварочно-технологическими свойствами. Они обеспечивают устойчивое горение дуги при сварке на переменном и постоянном токе, позволяют вести процесс сварки во всех положениях с хорошим формированием шва, образуют быстро затвердевающие и. легко удаляемые шлаки. При сварке допустима любая длина дуги и величина сварочного тока. Эти электроды обеспечивают повышенную прочность и высокую пластич Ность сварных соединений и п03В10ляют сваривать низколегированные конструкционные стали. При добавлении в покрытие железного порошка (электроды ОЗС-6) обеспечивается повышение коэффициента наплавки. Из существующих типов электроды с рутиловым покрытием отличаются наименьшей токсичностью, что делает их предпочтительными при выборе присадочного материала.  [c.48]

Прп выборе присадочного материала (алектродно проволоки) для дуговой сварки в среде защитных га юв следует рукиводстиоватьен табл. 15, в которой также указаны механическпе свойства сварных соединении и швов.  [c.73]

Металл сварных швов, содержащий ниобий, обладает повышенной склонностью к образованию горячих трещин. Во всех случаях сварки с введением ниобия в металл сварного шва следует производить проверку правильности выбора присадочного материала и технологии сварки в отношении воз.можностн появления горячих трещин в , еталле сварных швов.  [c.497]

Установлено отрицательное влияние кремния и ванадия в сварочном шве на коррозионную стойкость в окислительных средах сварных соединений из аустенитно-ферритных сталей [4]. Таким образом, при выборе присадочного материала необходимо стремиться обеспечить равенство не только механических свойств шва и основного металла и стойкость шва против межкристаллитной коррозии, но и равенство общей коррозионной стойкости металла всех зон сварного соединения. Необходимо учитывать влияние карбидообразующих элементов (Т1 и МЬ) на свойства швов в соединениях аустенитно-ферритных сталей, так как для обеспечения стойкости против межкристаллитной коррозии при содержании углерода >0,07 % необходимы стабилизаторы (карбидообразующие элементы). Сталь 08Х22Н6Т стойка в азотной кислоте 65 %-ной концентрации до температуры 50 °С, в 56 %-ной до температуры 70 °С, в 30 %-ной до температуры кипения. Сталь 08Х21Н6М2Т стойка в муравьиной кислоте независимо от концентрации при температурах до 60 °С, в 30 %-ной кипящей и в 85°/о-ной фосфорной кислоте при Г 80°С, в 10 %-ной серной кислоте.  [c.290]

Выбор присадочного материала осуществляют, исходя из требований прочности сварного соединения. В случае отсутствия требований высокой прочности к швам в качестве присадочной можно рекомендовать аустенитную проволоку СВ-01Х19Н18Г10АМ4 (ТУ 14-1-1892—71) либо Св-08Х21Н10Г6 (ГОСТ 2246—70), обладающих хорошей стойкостью против образования горячих трещин и высокой прочностью и пластичностью в широком интервале температур, в том числе отрицательных (до —196 °С).  [c.294]

Последнее обстоятельство является весьма важным и свидетельств) -ет о том, что при выборе того или иного присадочного материала необходимо предварительно знать, обеспечивается ли при заданных параметрах сварного соединения (А д, к) и >словиях нагружения оболочковой конструкции п (или типе оболочки) требования по запасу пластичности металла шва Лр. В противном случае при экспл> атации конструкции в наиболее нагр женной части мягкого шва может произойти локальное разрушение (Л = Лр), что приведет к разрушению всей конструкции. С точки зрения силового подхода данные условия сводятся к тот, чтобы в процессе нагружения сварных конструкций, ослабленных мягким швом, наибольшие напряжения в центральной части шва не превышали своего предельного значения — сопротивления микросколу определяющегося ресурсом пластичности металла /129/. Характеристика не зависит от температу ры и скорости нагружения и нашла хорошее практаческое применение при анализе разрушения материалов в у словиях их апастического деформирования /130, 131/. В работе /129/ нами была установлена связь данной силовой характеристики с ресурсом пластичности металла в виде  [c.195]

Как отмечалось в разделе 3.10 настоящей работы, основным моментом на стадии конструктивно-технологического проектирования свар-нь(х соединений оболочковых конструкций, требующим тщательной инженерной проработки, являетея рационгтьный выбор разделки под сварку и присадочного материала. Эти вопросы приобретают особую акгуальность, когда технология изготовления оболочковых конспрукций предопределяет использование в качестве присадочных материалов менее прочные, чем основной металл, но более пластичные присадочные проволоки.  [c.256]


Присадочный металл. Присадочный материал добавляетея в раеплавлениом виде в сварочный шов, заполняя его и сплавляясь с основным металлом, подвергаемым сварке. Качество присадочного материала во многом определяет прочность сварного соединения. Некоторые элементы, входящие в состав присадочного материала, склонны выгорать при сварке (С, Ми, 81 и пр.), что должно учитываться при выборе состава присадочной проволоки. Поверхность проволоки должна быть чистой от окалины, ржавчины, масла и прочих загрязнений. Проволока должна плавиться спокойно, без вскипания и разбрызгивания. Последнее обусловливается наличием на поверхности проволоки окислов, которые восстанавливаются водородом пламени по реакции РеО -р Нз = Ре-(--I- НзО, и образующиеся при этом водяные пары, нерастворимые в жидкой стали, вызывают разбрызгивание металла. Состав присадочной проволоки определяется ГОСТ 2246.  [c.407]

Особое внимание должно быть уделено выбору марки сварочной проволоки. Исходя из основных положений, изложенных ранее, в качестве присадочного материала для наплавки в юреде углекислого газа могут быть использованы сварочные проволоки, обеспечивающие легирование наплавленного металла хромом или хромом и никелем в требуемом количестве для обеспечения высокой коррозионной и эрозионной стойкости. Кроме того, сварочные проволоки должны иметь достаточное количество элементов-раскислителей (марганец, кремний, титан) для нормального протекания физико-химических реакций и получения высокого качества наплавленного металла. При выборе сварочной проволоки должно учитываться повышенное выгорание легирующих элементов вследствие высоких окислительных св ойств защитного газа, а также большее разбавление металла шва основным металлом за счет увеличения глубины провара.  [c.91]

Флюс при электродуговой наплавке является вспомогательным материалом, он вместе с выбором материала проволоки и режимов наплавки ифает важную роль в обеспечении необходимых свойств получаемого покрытия. Флюсы применяют как в виде сухих зерен, так и в виде пасты из зерен со связующим. Элементы флюса выполняют свои функции после расплавления, сгорания или разложения. Расплавленный флюс должен быть жидкотекучим. Температура плавления присадочного материала должна превышать на 100... 150 °С температуру плавления флюса. Однако флюс не должен кипеть при рабочей температуре наплавки.  [c.282]

Больщое значение при сварке алюминия и его сплавов имеет правильный выбор присадочного металла. Чтобы получить для металла шва свойства, близкие к свойствам основного металла (прочность, пластичность, коррозионная стойкость, теплофизические характеристики и т. д.), целесообразно использовать присадочный металл того же состава, что и основной. Однако из-за повышенной склонности большинства сплавов алюминия к кристаллизационным трещинам более рационально применять присадочный материал, который, отличаясь по составу от свариваемого сплава, обеспечил бы проведение эффективного комплексного легирования с использованием модификаторов.  [c.371]

Аргпнп-диговая сварка. Сваривали пластины толщи-пои 4 н 10 мм е применением присадочного материала в виде проволоки диаметром 2 мм или полос, нарезанных из листа. После сварки пластины отжигали при температурах 650, 700, 750, 800 и 850° С и течепне 1—2 ч с охлаждением на воздухе е целью выбора оптимальной температуры отжига сварных соединений.  [c.337]


Смотреть страницы где упоминается термин Выбор присадочного материала : [c.88]    [c.306]    [c.514]    [c.173]    [c.58]    [c.186]    [c.224]   
Смотреть главы в:

Краткий справочник технолога-машиностроителя Изд.2  -> Выбор присадочного материала

Краткий справочник технолога-машиностроителя Изд.2  -> Выбор присадочного материала



ПОИСК



Выбор материала

Выбор размеров присадочного материала

Присадочные материалы



© 2025 Mash-xxl.info Реклама на сайте