Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Световые волны свойства

Выполненные в начале XIX в. впечатляющие исследования по интерференции, дифракции и поляризации света сделали волновую концепцию в оптике практически безраздельно господствующей. Однако при этом возникали серьезные сомнения по поводу свойств той среды, в которой распространяются световые волны,— свойств упругого эфира.  [c.28]

Как Максвелл, так и Лорентц считали, что носителями световой волны в пространстве является эфир. Существование эфира долгое время не вызывало сомнений, а представления о свойствах эфира развивались параллельно с представлениями о природе света. Согласно Максвеллу, эфир является ответственным за все электромагнитные явления. По Лорентцу, эфир представляет собой бесконечную среду, характеризующуюся только одним параметром —  [c.7]


В дальнейшем предвидение Максвелла оправдалось как теоретически, так и экспериментально. Оказалось, что световая волна обладает всеми перечисленными свойствами электромагнитной волны. Поскольку в дальнейшем изложение будет основываться на этих свойствах, будет не лишним привести ниже их доказательство.  [c.22]

Фазовая скорость. Выше мы ознакомились с некоторыми свойствами электромагнитной волны. Теперь более подробно рассмотрим распространение световой волны и ознакомимся с понятиями фазовой и групповой скоростей.  [c.27]

Принцип суперпозиции является результатом того, что световые волны описываются однородными линейными уравнениями Максвелла и линейными материальными уравнениями. Другими словами, свойства среды, в которой распространяется свет, не зависят от интенсивности распространяющейся световой волны. Это, как нам сейчас известно, имеет место только при слабых полях . Следовательно, принцип суперпозиции будет верным только для слабых полей, т. е. принцип суперпозиции является принципом линейной оптики.  [c.67]

Осталось решить задачу о зависимости скорости распространения световой волны в -анизотропной среде, а следовательно, и показателя преломления анизотропной среды от ее конкретных свойств, определяемых главными значениями диэлектрической проницаемости Ву, Sy и е,.. С этой целью составим уравнение, определяющее фазовую скорость (или аналогичным путем скорость по лучу) распространения световой волны в анизотропной среде в зависимости от направления N.  [c.251]

Уравнение (10.19) называется уравнением волновых нормалей Френеля и позволяет определить скорость по нормали в зависимости от направления нормали N, заданного Nx, N у, N,, и от свойства кристалла, заданного главными скоростями y.v, Vy, или главными диэлектрическими проницаемостями е, ., е.у, t%. Отметим, что v, , (л — скорости света в случае, когда колебания вектора электрической индукции совершаются по главным диэлектрическим осям, а Уд/ — скорость световой волны для произвольного направления, но перпендикулярной фронту волны вектора D и, следовательно, направленной по нормали N.  [c.252]

Проведенное рассмотрение позволяет сделать одно весьма общее заключение. Электромагнитная теория объясняет все свойства световых волн в кристалле, а именно направление распростра-  [c.130]


Таким образом, изменение п в зависимости от со обусловливается суперпозицией первичной световой волны и всех вызванных ею вторичных волн в исследуемом веществе, свойства которого должны существенно влиять на ход показателя преломления п(сд). Важно понять, что в данном случае первичная волна не заменяется суммой вторичных волн ( как это делается при истолковании явления дифракции, см. 6. 1), а дополняется ими.  [c.139]

Существенный прогресс в истолковании явления интерференции связан с именами Френеля, Юнга и других выдающихся физиков, работавших в начале XIX в. Развитая ими волновая теория, согласно которой световые волны представляют собой возмущения, распространяющиеся в мировом эфире, в этот период достигла наибольшего успеха, хотя исследование некоторых проблем (например, интерференции поляризованных лучей) требовало очень сложных построений и необычных гипотез о свойствах эфира.  [c.175]

Закон независимости световых пучков, упомянутый в 1, означает, что световые пучки, встречаясь, не воздействуют друг на друга. Зто положение было ясно сформулировано Гюйгенсом, который писал в своем Трактате Одно из чудеснейших свойств света состоит в том, что, когда он приходит из разных н даже противоположных сторон, лучи его производят свое действие, проходя один сквозь другой без всякой помехи. Этим вызывается то, что несколько зрителей могут одновременно видеть через одно и то же отверстие различные предметы Сам Гюйгенс прибавляет, что этот вывод нетрудно понять с точки зрения волновых представлений. Он является следствием принципа суперпозиции (см. 4), в силу которого световой вектор одной световой волны просто складывается с вектором другой волны, не испытывая никакого искажения. При этом, однако, возникает следующий вопрос. В силу принципа суперпозиции при сложении векторов отдельных волн может получиться волна, амплитуда которой равна, например, сумме амплитуд складывающихся волн. А так как интенсивность волны пропорциональна квадрату амплитуды, то интенсивность результирующей волны не будет, вообще говоря, равна сумме интенсивностей складывающихся волн, ибо квадрат суммы нескольких величин не равен сумме их квадратов. Обычный же опыт показывает, что освещенность, создаваемая двумя или несколькими световыми пучками, представляется простой суммой освещенностей, создаваемых отдельными пучками. Таким образом, обычные экспериментальные факты кажутся на первый взгляд противоречащими волновым представлениям.  [c.62]

Мы можем использовать линзу или какой-либо более сложный оптический прибор и совместить фотопластинку с изображением 51 источника 5 (рис. 11.2). Благодаря таутохронизму оптических систем (см. 20) все части световой волны, проходящие через различные части линзы, приходят в изображение 5] с равными фазовыми сдвигами, и сведения о положении источника света определяются локализацией его изображения измерив положение изображения и зная свойства оптического прибора, можно вычислением определить координаты источника. Сказанное относится, очевидно,  [c.235]

Орудием опытного исследования асимметрии может, очевидно, служить только система, которая в свою очередь обладает свойством асимметрии. Такой системой, пригодной для исследования свойств светового луча, может служить кристалл, атомы которого располагаются в виде пространственной решетки так, что свойства кристалла по различным направлениям оказываются различными (анизотропия). И действительно, прохождение света через кристаллы и было первым явлением, послужившим к установлению поперечности световых волн.  [c.371]

В предшествующих главах были подробно обсуждены многообразные свойства света, указывающие на волновую природу его (интерференция, дифракция) и позволяющие установить поперечный характер световых волн (поляризация). Попутно не раз отмечалось, что световые волны представляют собой электромагнитные волны. В дальнейшем мы встретим многочисленные и разнообразные доказательства электромагнитной природы световых волн.  [c.400]

Мы воспользуемся последним методом, поскольку он позволяет просто найти направление распространения, амплитуды и фазы отраженной и преломленной волн, т. е. теоретически вывести законы отражения и преломления световых волн. При этом способе, однако, вопрос о связи между показателем преломления и свойствами атомов, составляющих среду, остается открытым.  [c.471]


Мы уже ознакомились с важнейшими фактами, характеризующими распространение света в кристаллах. Основное отличие кристаллической среды от сред, подобных стеклу или воде, состоит в явлении двойного лучепреломления, обусловленном, как мы видели, различием скорости распространения света в кристалле для двух световых волн, поляризованных во взаимно перпендикулярных плоскостях. С этой особенностью связано и различие в скорости распространения света по разным направлениям в кристалле, т. е. оптическая анизотропия кристаллической среды. Обычно, если среда анизотропна по отношению к одному какому-либо ее свойству, то она анизотропна и по другим свойствам. Однако можно указать случаи, когда среда может рассматриваться как изотропная в одном классе явлений и оказывается анизотропной в другом. Так, кристалл каменной соли обнаруживает изотропию оптических свойств, но механические свойства его вдоль ребра и диагонали различны.  [c.495]

При исследовании оптических свойств кристаллов, как правило, применяются плоские световые волны. В этом случае соотношение (149.2) существенно упрощается. Удобно воспользоваться комплексной записью колебаний, согласно которой плоские  [c.522]

Согласно представлениям Френеля свет распространяется в особой среде, светоносном эфире, обладающем свойствами упругого твердого тела, крайне разреженного и проникающего во все обычные среды. Скорость световой волны определяется в основном свойствами эфира, но в вещественных средах молекулы изменяют свойства эфира, в них заключенного, и, таким образом, влияют на скорость распространения света. Развивая идею Френеля об учете влияния молекул вещества на частички эфира, Коши (1829—1835 гг.) пришел к формуле, выражающей зависимость показателя преломления от длины волны  [c.547]

Одним из наиболее интересных свойств динамической голограммы является направленная перекачка энергии между взаимодействующими в объеме голографической решетки световыми волнами вплоть до сложения двух падающих пучков в один выходящий. В частности можно наблюдать перекачку энергии в направлении от сильного пучка к слабому и тем самым усиление последнего. Этот эффект максимален, когда фазовый сдвиг между интер-  [c.66]

Изложение строгой теории связано с использованием сложных математических выражений, поэтому мы ограничимся формулировкой основных положений н качественным рассмотрением основных фундаментальных свойств световых волн, распространяющихся в кристалле.  [c.30]

Оптические исследования — это прежде всего исследования физики взаимодействия света с веществом. Существуют три последовательных уровня рассмотрения указанного взаимодействия, три постепенно углубляющихся подхода I) классический, 2) полуклассический, 3) квантовый. На первом уровне оптическое излучение представляют в виде световых лучей или электромагнитных волн в соответствующем диапазоне частот, а вещество описывают с использованием понятий и аппарата механики сплошных сред, термодинамики, классической электродинамики. Иными словами, при данном подходе как свет, так и вещество рассматриваются в рамках классической физики. Полуклассический подход предполагает квантование вещества при сохранении классической трактовки света классические световые волны взаимодействуют с коллективами атомов и молекул. Принимаются во внимание структура энергетических уровней атомов и молекул, энергетических зон кристаллов, статистика заселения различных квантовых состояний. Наконец, при квантовом подходе осуществляется квантование не только вещества, но и излучения именно такой подход используется в квантовой электродинамике. Если при рассмотрении взаимодействия света с веществом на классическом и полуклассическом уровнях учитывается только волновая природа света, то на квантовом уровне принимаются во внимание также и его корпускулярные (квантовые) свойства. Это отвечает переходу от классической оптики, имеющей дело с лучами и световыми волнами, к оптике, которую естественно назвать квантовой оптикой. Одним из основных понятий этой оптики является  [c.3]

Вывод о поперечности световых волн Френель решился опубликовать лишь через пять лет — в 1821 г. Слишком уж необычным представлялся такой вывод в применении к упругому эфиру, которому приходилось приписать теперь свойства твердого тела. Ведь только в твердых телах возможны поперечные упругие волны.  [c.28]

Явления, связанные с обратимыми изменениями физических свойств среды под действием проходящего сквозь среду интенсивного света, называют нелинейно-оптическими. Выше мы говорили об изменении под действием света такой характеристики среды, как ее диэлектрическая восприимчивость. С этим связаны, в частности, явления генерации оптических гармоник, параметрического рассеяния света, параметрической генерации света — явления, прекрасно демонстрирующие нарушение принципа суперпозиции световых волн в среде (позднее мы поговорим о них подробнее). Нелинейно-оптические явления могут быть обусловлены изменением под действием света не только восприимчивости, но и других физических характеристик, например степени прозрачности (коэффициента поглощения) вещества.  [c.213]

Упругие свойства 1 (2-я)—166 Изотропные среды—см. Оптически изотропные среды Световые волны — Распространение в изотропных средах Изотропные точки 3 — 268 Изохорная теплоёмкость I (1-я)—438 Изохорный процесс 1 (1-я) — 459  [c.87]

В перем. электрич, полях высоких частот, напр, в поле световой волны, свойства Д. принято характеризовать преломления показателем п и поглощения показателем к (вместо е и б"). Показатель преломления п равен отношению скоростей распространения эл.-магп. волн в Д. и в вакууме к характеризует затухание эл.-магн. волпы в Д. Величины п, к, е. и s" связаны соотношением  [c.696]


Это была не единственная трудность, стоящая перед гипотетическим эфиром. Как показали измерения Фуко и Физо, скорость распространения света в разных средах различна. Это могло иметь место в случае, если бы эфир обладал разными свойствами в разных средах. Неприятиости, связанные с эфиром, этим не исчерпываются. Если эфир обладает свойствами твердого тела, то в нем могут распространяться как поперечные, так и продольные волны, в то время как у световой волны продольной составляющей нет. Следовательно, эфир должен был обладать такими свойствами, которые допускают распространение в нем только поперечной волны.  [c.7]

Шаправленность лазерного излучения. Лазерное излучение кроме высокой монохроматичности обладает также свойством остронапра-вленности. Это объясняется как свойством индуцированного излучения, так и воздействием резонатора. Однако, несмотря на это, из-за явления дифракции строго параллельный пучок света получить принципиально невозможно. Как известно, при любом ограничении фронта волны имеет место дифракция. Так как при генерации света в лазере фронт световой волны ограничивается окружностью основания кристалла рубина или же зеркала диаметром D, то, согласно теории дифракции, угол минимального расхождения лучей  [c.387]

Мы видим, что электромагнитная теория сразу привела к однозначному выяснению проблемы, представляющей чрезвычайные затруднения в старой волновой теории света. Действительно, опытами Френеля и Араго была экспериментально доказана по-перечность световых волн, но истолконание этих опытов в рамках представлений о распространении упругих волн в эфире было крайне трудно и потребовало введения искусственных предположений, чрезвычайно усложнивших теорию. Сейчас это совер-uieHHo не актуально, светоносный эфир неприемлем не только как конкретная среда, но и как абстрактная система отсчета (см. гл. 7), и отсутствие продольной составляющей свободной электромагнитной волны оказывается простым следствием уравнений Максвелла. Интересен вопрос о возможности экспериментального доказательства этого фундаментального свойства электромагнитных волн. На данном этапе имеет смысл указать на возможность эффектной иллюстрации их поперечности в опытах с современными источниками СВЧ (рис. 1.1).  [c.22]

В качестве основного объекта исследования разумно и по сей день выбирать упомянутый выше исландский шпат, хотя почти все кристаллы в той или иной степени обладают этим свойством. Опыт показывает, что при освещении кристалла исландского шпата узким пучком света в нем возникают два луча, которые со времен Гюйгенса называют обыкновенным и необыкновенным (рис.3.1). Этот эффект наблюдается и при нормальном падении света на естественную грань кристалла. Для необыкновенного луча показатель преломления rig зависит от направления луча а кристалле, тогда как Пд — показатель преломления обыкновенного луча — остается постоянным при любом угле падения световой волны на кристалл. В частности, для исландского шпата (для света с длиной волны X = 5893А — желтый дуб.иет натрия) Лц = 1,658, а 1,486 < < 1,658. Следовательно, в данном случае Пе < По- Такие кристаллы называют отрицательными. Вместе с тем существует широкий класс веществ (например, кристаллический кварц), для которых > л,,. Такие кристаллы называют положительными.  [c.114]

Наконец, упругий эфир приходилось наделять особыми свойствами, чтобы объяснить полное отсутствие продольных колебаний в световых волнах, установленное упомянутыми выше опытами Френеля и Aparo. Сопоставление всех этих особенностей упругого твердого эфира обнаруживает существенные затруднения упругой теории света, которая, к тому же, не указывала никаких связей оптики с другими физическими явлениями и ие позволяла связать оптические константы, характеризующие вещество, с какими-либо другими параметрами его.  [c.21]

С этой точки зрения утверждение, что немонохроматический, в частности, белый свет, представляемый волновыми импульсами, состоит из совокупности монохроматических световых волн, имеет не больше смысла, чем утверждение, что шум есть совокупность правильных музыкальных тонов. Как из светового, так и из звукового импульса можно при помощи подходящего анализирующего инструмента выделить тот или иной простой тон (монохроматический свет). Однако степень монохроматизации тех составляющих, в которые наш прибор преобразует изучаемый импульс, зависит от свойств прибора и от его разрешающей силы. Поэтому-то анализ с помощью спектрального прибора может быть более или менее совершенным в зависимости от того, какой инструмент был использован для преобразования импульса. Механизм такого преобразования особенно ясно выступает при рассмотрении действия решетки на импульс. Этот пример в то же время ясно показывает, насколько сильно вид спектра зависит от разрешающей способности спе1 т-рального аппарата.  [c.220]

Трудности, связанные с этим, состояли в том, что поперечные колебания и волны не могут иметь места в жидкостях и газах. Упругие же колебания в твердых телах еще не были исследованы к тому времени. Учение Френеля о поперечных световых волнах дало толчок к исследованию свойств упругих твердых тел. Применение полученггых знаний к оптике повело к ряду принципиальных затруднен1 й, связанных с несовместимостью механических законов колебаний упругой среды и наблюдае.мых на опыте законов оптических явлений. Эти затруднения были устранены только с появлением электромагнитной теории света. Однако для интересующего нас вопроса о поперечности световых волн механические теории света дали очень много, и плодотворность их для того времени стоит вне сомнения.  [c.372]

Электродинамика (и оптика) движущихся сред, развитая Ло-рентцом, есть часть его общей электронной теории, в силу которой все электромагнитные свойства вещества обусловливаются распределением электрических зарядов и их движением внутри неподвижного эфира. В качестве формул преобразования координат при переходе от одной инерциальной системы к другой сохраняются преобразования Галилея, и, поскольку отрицается принцип относительности, уравнения электродинамики Лорентца не являются инвариантными по отношению к этим преобразованиям. Теория Лорентца означала очень крупный шаг вперед и разрешала большой круг вопросов, представлявших значительные теоретические трудности. В случае оптических явлений она совпадает с теорией Френеля и также приводит к представлению о частичном увлечении световых волн. По теории Лорентца движение вещества есть движение молекул и связанных с ними зарядов в неподвижном эфире, и учет этого движения показывает, что в среде, движущейся со скоростью V, свет распространяется со скоростью q + (1 — in )v, где l — скорость света в неподвижной среде. Таким образом, теория Лорентца приводит к формуле частичного увлечения Френеля, хорошо подтвержденной тщательными измерениями.  [c.449]

Исследование показывает, однако, что многие свойства атома удается передать при помощи классических законов, применяемых соответственным образом. В частности, взаимодействие атома со световой волной, ведущее к диспереии света, можно достаточно хорошо описать, если рассматривать атом как совокупность гармонических осцилляторов соответствующей частоты, т. е. считать, что электрон удерживается в атоме квазиупругой силой Ьг. Таким образом, уравнение движения электрона (массы т), смещенного из положения равновесия и предоставленного действию этой внутриатомной силы, есть  [c.551]

Из условия пространственной синфазности (222.4) видно, что фазы ф/ волн SJ должны изменяться в зависимости от положения излучающегося атома по такому же закону, по которому изменяется фаза в световой волне. Это означает, что агентом, фазирующим излучение атомов, должна быть световая же волна. Вместе с тем, в гл. XXXIII указывалось, что для микроскопического описания спектральных свойств теплового излучения А. Эйнштейн ввел представление о вынужденном испускании. Одно из основных свойств вынужденного испускания состоит в том, что волны, излучаемые атомом в этом процессе, имеет такую же частоту и такую же фазу, что и действующая на атом волна. Благодаря указанному свойству, как будет показано в 223, фазнровка излучения удаленных атомов может обеспечиваться вынужденным испусканием.  [c.774]


Электрические и оптические свойства вещества определяются поведением электронов молекул в статическом электрическо.м поле, создаваемом между заряженными пластинками конденсатора, и в переменном иоле световой волны.  [c.3]

Впервые эти закономерности были установлены в начале XIX в. Aparo и Френелем. Принципиальное значение этих опытов состояло тогда в том, что они однозначно доказывали строгую поперечность световых волн и отсутствие продольной компоненты. Этот вывод, естественный с точки зрения электромагнитной теории, был сделан в свое время Юнгом и Френелем еще для упругой теории света и приводил к очень серьезным трудностям. Гипотеза о существовании среды, дающей строго поперечные колебания и не допускающей продольных, несовместима с представлением об обычной упругой среде, что заставило для понимания законов отражения и преломления света делать предположения, противоречащие механике обычных сред. В частности, Френель высказал гипотезу о том, что при переходе из одной среды в другую свойства эфира в этих средах изменяются таким образом, что его упругость остается неизменной и, следовательно, плотность меняется прямо пропорционально квадрату показателя преломления среды. Наличие данной гипотезы позволило Френелю решить задачу о соотношении между амплитудами падающей, отраженной и преломленной волн (формулы Френеля).  [c.49]

Будем рассматривать одноосные кристаллы (точнее, отрицательные одноосные кристаллы). Напомним, что в одноосном кристалле существует особое направление, называемое оптической осью, оптические свойства кристалла одинаковы для всех направлений, составляющих с этой осью один и тот же угол. Плоскость, проходящую через оптическую ось и направление волнового вектора световой волны, называют плоскостью главного сечения. Попадая в кристалл, световая волна превращается в две волны обыкновенную и необыкновенную. Первая линейно поляризована перпендикулярно плоскости главного сечения, а вторая линейно поляризована в этой плоскости. Показатель преломления для обыкновенной волны не зависит от направления ее волнового вектора обозначим этот показатель преломления /г" (индекс о есть начальная буква английского слова ordinary — обыкновенный). У необыкновенной волны показатель преломления зависит от угла 0 между направлением волнового вектора и оптической осью кристалла обозначим его через п (9) (индекс е есть начальная буква слова exiraordinary — необыкновенный). Графически зависимость п (0) имеет вид эллипса (рис. 9.11, а) здесь О А — оптическая ось кристалла, длина отрезка ОД1 есть значение п (0) для угла 0. Там же изображена окружность радиуса п° (для обыкновенной волны). Видно, что в наиравлении оптической оси показатели преломления обыкновенной и необыкновенной волн совпадают п 0) = п°. В направлении же, перпендикулярном оптической оси (9=90°), показатели преломления указанных волн различаются наиболее скльно.  [c.233]

При фотографировании информация передается по цепочке объект - световая волна фотопластинка - глаз. В голографии же информация передается по иной цепочке объект - световая волна фотопластинка (голограмма) - световая волна- глаз. При этом обе световые волны, фигурирую-ющие в последней цепочке, являются эквивалентными. Поэтому при рассматривании голограммы (освещенной опорной волной) глаз наблюдателя воспринимает не двухмерное изображение объекта, а сам объект как он есть. При считывании голограмм трехмерных реальных объектов наблюдают именно, трехмерные реальные объекты. Голограмма воспроизводит объемное йзобра-же1[ие, обладающее с оптической точки зрения свойствами реального объекта.  [c.345]

Естественный луч представляет собой поперечную электромагнитную волну с хаотической произвольной ориентацией этих векторов относительно волновой нормали. Если естественный луч проходит через прозрачный кристалл, атомы которого располагаются в виде пространственной решетки таким образом, что свойства оптического кристалла по различным направлениям оказываются различными, т. е. наблюдается анизотропия, то можно получить на выходе из такого кристалла-поляризатора луч, который будет иметь вполне определенную ориентацию векторов Е н Н. Практически это означает, что при прохождении через такой кристалл луч раздваивается (двойное лучепреломление). Каждый из таких лучей при про-хо кдении через второй кристалл будет снова раздваиваться, но давать лучи различной интенсивности, а в некоторых случаях один луч (второй) практически исчезает. Вращая вокруг оси такой кристалл, можно пропускать больше или меньше света. Таким образом, получается поляризованный свет, представляющий собой световые волны с определенной ориентацией электрического и магнитного векторов. Помещая на пути такого луча модель из прозрачного материала, будем изменять условия прохождения света в зависимости от того, как будут ориентированы оси анизотропии этого материала. Степень анизотропии будет зависеть от величины и направления действующих механических напряжений.  [c.65]


Смотреть страницы где упоминается термин Световые волны свойства : [c.63]    [c.68]    [c.619]    [c.776]    [c.4]    [c.204]    [c.117]    [c.122]    [c.202]    [c.41]    [c.192]   
Метрология, специальные общетехнические вопросы Кн 1 (1962) -- [ c.324 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте