Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Компрессоры газовые центробежные

Чтобы оценить перспективу применения этих результатов, необходимо сделать несколько замечаний об элементах конструкций. Фактически не существует элементов, подверженных строго одноосному напряженному состоянию. Рассмотрим, например, лопатку компрессора газовой турбины. Хотя турбина преимущественно подвержена действию центробежных сил, лонатка испытывает также изгиб и кручение и должна быть усилена у основания, где возникают контактные напряжения. Соображения лучшей работы лопатки требуют усложнения ее конфигурации меняется площадь поперечного сечения и его форма вдоль длины лопатки, профиль закручивается и лопатка должна плавно переходить в замок.  [c.392]


Лопатки компрессоров. На лопатки как осевых, так и центробежных компрессоров обычно действуют значительные вибрационные нагрузки. В связи с этим основными требованиями являются высокая усталостная прочность материала и его способность к демпфированию колебаний. Поскольку в компрессорах конструкционное демпфирование играет сравнительно меньшую роль по сравнению с аэродинамическим, а иногда и демпфированием в материале, то выбор материала лопаток и режима его термообработки проводят с учетом требования получения декремента затухания максимально возможного значения. Следует иметь в виду, что логарифмический декремент затухания колебаний у широко применяемых для лопаток хромистых сталей с повышением температуры, уровня вибрационных и растягивающих напряжений увеличивается. Тем не менее вибрационные напряжения в рабочих лопатках иногда достигают 200 МПа. Так, повреждения от ударов посторонним предметом или коррозионные повреждения (коррозионное растрескивание) являются концентраторами, резко снижающими усталостную прочность лопаток. Поэтому используются все меры, позволяющие повысить предел усталости, в частности соответствующая обработка поверхности. Требования коррозионной стойкости материала и его сопротивления коррозионной усталости являются особенно важными для компрессоров газовых турбин, работающих в морских условиях. Материал компрессорных лопаток, работающих на загрязненном воздухе, должен противостоять эрозии. В противном случае сопротивление эрозии должно обеспечиваться применением специальных покрытий. Под действием центробежных сил в лопатках возникают растягивающие напряжения, поэтому материал должен также обладать определенным уровнем прочностных свойств при рабочих температурах. Особенно существенным становится это требование для высокооборотных компрессоров. В компрессорах с большими степенями сжатия температура лопаток может достигать уровня, при котором необходимо учитывать изменение характеристик материала во времени, в частности сопротивление ползучести.  [c.40]

Вращающиеся диски широко применяют в паровых и газовых турбинах, в компрессорах, вентиляторах и машинах химической промышленности. Диски подвергаются нагрузкам, вызывающим их растяжение и изгиб, а также действию высоких температур. Существенное значение имеют центробежные силы. Обычно нагрузки и температурное поле симметричны относительно оси диска, вследствие чего и напряжения являются функциями только расстояния от оси вращения.  [c.460]


Процессы, совершающиеся в турбинах, центробежных и осевых компрессорах, реактивных двигателях и т. п., сопровождаются различными преобразованиями энергии, которые происходят в движущемся газе. Теория и расчеты этих машин строятся на общих данных и положениях теории газового потока. Эта теория не только дает возможность изучения отдельных процессов в движущемся газе но и устанавливает условия, которые влияют на протекание этих процессов и их эффективность.  [c.124]

Этот класс двигателей в настоящее время наиболее широко применяется в авиации. В этих двигателях сжатие воздуха осуществляется в диффузоре вследствие скоростного напора и в компрессоре (осевом или центробежном), имеющем высокую степень повышения давления. Из компрессора воздух подается в камеру сгорания, а затем продукты сгорания поступают на газовую турбину, где, расширяясь, производят работу, идущую на привод компрессора. Окончательно расширение газа до атмосферного давления происходит  [c.172]

Для сжатия воздуха в газовых турбинах применяют не поршневые, а преимущественно центробежные и аксиальные (лопаточные) компрессоры в них, а также на лопатках газовых турбин рабочее тело движется с большими скоростями, что сопровождается трением как в самом газе, так и между газом и стенками. Часть кинетической энергии движущегося газа затрачивается на трение эта энергия превращается в тепло и усваивается газом. Как было сказано, трение — процесс необратимый сжатие и расширение газа по адиабате при наличии трения сопровождаются ростом энтропии, и эти процессы в Ts-диаграмме не будут изображаться прямыми, параллельными оси ординат.  [c.167]

Газотурбонагнетатели для наддува ДВС. Современные ДВС, особенно мощные, снабжаются газотурбинными наддувочными агрегатами, которые состоят из газовой турбины и компрессора [24]. Газовая турбина работает на выпускных газах ДВС и обычно выполняется осевой, а для малых двигателей иногда радиальной. Компрессоры, как правило, центробежные, у мощных двигателей иногда состоят из комбинации осевых ступеней с центробежной.  [c.81]

Газовые турбины для привода центробежных нагнетателей на компрессорных станциях имеют один общий цилиндр, в котором размещены общий составной ротор воздушного компрессора и ТВД, ротор силовой турбины, соединяющийся с ротором нагнетателя через редуктор (ГТ-700-5) или непосредственно муфтой (ГТК-5, ГТ-750-6, ГТК-10, ГТН-9-750).  [c.227]

В 1937 г. А. М. Люлька был разработан проект турбореактивного двигателя с осевым компрессором и кольцевой камерой сгорания, на несколько лет опередивший появление аналогичных проектов за рубежом. В 1943—1944 гг. под его же руководством в Центральном институте авиационного моторостроения был построен экспериментальный турбореактивный двигатель С-18 (рис. 104). Тогда же (1940—1945 гг.) в ЦИАМ велась разработка оригинальной конструкции авиационного газотурбинного двигателя с трехступенчатой газовой турбиной, с трехступенчатым центробежным компрессором и с системой испарительного жидкостного охлаждения по схеме, предложенной в 1935 г. проф. В. В. Уваровым. С 1945 г. к проектированию турбореактивных двигателей помимо группы А. М. Люлька были привлечены большие конструкторские коллективы А. А. Микулина,В. Я. Климова и других ОКБ и значительно увеличены объемы необходимых теоретических и экспериментальных исследований. К этому же времени относится начало работ по изысканию жаропрочных материалов для газовых турбин двигателей во Всесоюзном институте авиационных материалов (ВИАМ).  [c.369]

Создаваемый не-охлаждаемым центробежным компрессором теоретический напор в метрах газового столба не зависит от свойств газа.  [c.575]

Фиг. 26. Характеристика центробежного нагнетателя при п уаг а — газовой турбины 6 — компрессора. Фиг. 26. Характеристика <a href="/info/77017">центробежного нагнетателя</a> при п уаг а — <a href="/info/884">газовой турбины</a> 6 — компрессора.

Фиг. 86. Рабочее колесо центробежного газового компрессора газотурбинной установки ГТ-12-650 Фиг. 86. <a href="/info/29375">Рабочее колесо</a> центробежного газового компрессора газотурбинной установки ГТ-12-650
Схема установки показана на рис. 2-19. Одноступенчатый воздушный центробежный компрессор сжимает воздух от начального давления 0,98 ama до давления 2,85 ama. На том же валу помещен четырехступенчатый центробежный компрессор, повышающий давление доменного газа от 0,95 ama (при 60° С) до 3,2 ama. Дымовые газы из камеры сгорания выходят с температурой 970° С и после охлаждения в пароперегревателе до 750° С поступают в газовую турбину.  [c.59]

У ротора центробежного компрессора обычно более нагружен подшипник, ближайший к колесу компрессора у ротора осевого компрессора — подшипник со стороны низкого давления у ротора газовой турбины — подшипник у диска турбины.  [c.485]

Газовая турбина. . . . Центробежный компрессор Осевой компрессор. . .  [c.490]

На базе выпускавшихся ранее центробежных и осевых компрессоров и газовых турбин фирма Броун Бовери создала газотурбинную установку, которая включается в процесс получения слабой азотной кислоты по схеме, показанной на рис. 1-3.  [c.11]

Газовые компрессоры состоят из осевого компрессора низкого давления и четырехступенчатого центробежного компрессора высокого давления. Между ними находится промежуточный охладитель.  [c.87]

Центробежный газовый компрессор и газотурбинная установка имеют общую масляную систему. Масляный насос с приводом от вала турбины обеспечивает маслом обе машины. Для обеспечения маслом подшипников во время пуска и остановки газотурбинной установки имеется масляный насос с приводом от двигателя постоянного тока. Расход масла на одну установку составляет 45 л в месяц.  [c.135]

Эта фирма широко известна производством паровых турбин, компрессоров, насосных установок и другого тяжелого оборудования. Фирма Рато одной из первых приступила к созданию газотурбинных установок открытого цикла. Еще в 1900 г. была сделана экспериментальная газовая турбина с небольшой избыточной мощностью. Эта машина имела 25-ступенчатый центробежный компрессор со степенью повышения давления 5. Температура газов перед турбиной на номинальной нагрузке равнялась 560°С, к. п. д. установки не превышал 3%.  [c.186]

Рабочий 14-ступенчатый компрессор имеет степень повышения давления 3,6. В газовом 6-ступенчатом центробежном компрессоре установлены промежуточный и предвключенный охладители. Рабочий и газовый компрессоры приводятся двухступенчатой турбиной высокого давления. Максимальная скорость вала турбины 9540 об/мин. Обе турбины имеют жесткие кованые роторы и облопачивание, сделанное точной ковкой.  [c.189]

Высокие напряжения в рабочих колесах исключают применение в них обычных литых деталей, использование которых, однако, могло бы обеспечить лучшую технологичность конструкции, имеющей сложную форму. Рабочие колеса изготавливаются в настоящее время в основном из поковок. Повышение качества отливок и, в частности, использование методов точного литья позволило применить для рабочих колес центробежных машин цельнолитые или сварные конструкции из отливок. Наибольшее распространение получили сварные конструкции колес центробежных машиц в главных питательных насосах паросиловых установок сверхвысоких параметров и в газовых центробежных компрессорах газотурбинных установок [97].  [c.133]

Осевой компрессор, фиг. 74, г, для малых расходов обычно не применяется. Он удовлетворяет требованиям только двух потребителей — дизель-генераторной установки и судового дизеля. Если сдвинуть характеристики вправо, этот компрессор идеально удовлетворяет требованиям судового двигателя. Из приведенного анализа следует, что требованиям дизелей всех типов удовлетворяют объемны11 винтовой компрессор и центробежный компрессор с безлонаточным диффузором. Достаточно универсальным является центробежный компрессор с лопаточным диффузором. В связи с тем, что объемный компрессор непригоден для спаривания с газовой турбиной, он применяется сравнительно редко. Применение этого компрессора по-видимому будет иметь место в тех случаях, когда необходимо обеспечить относительно высокие давления на очень малых оборотах и пусковых режимах.  [c.364]

Осенью 1951 г. на авиационной выставке в Фарнборо (Англия) был экспонирован турбопоршневой двигатель Нэпир Номад , сочетающий работу двухтактного поршневого двигателя с осевым и центробежным компрессорами, газовой турбиной и реактивным соплом. По сообщению печати, мощность двигателя достигала 3000 л. с. на взлетном режиме, не считая дополнительной реактив-34  [c.34]

Широкое применение ГТУ и ДВС на компрессорных станциях магистральных газопроводов и на других объектах газовой и нефтяной промышленности связано с решением большого числа технических и технологических задач. К таким задачам можно отнести оптимизацию режимов газоперекачивающих агрегатов с газотурбинным приводом при изменяющихся технологических параметрах (количество транспортируемого газа, давление, температура), а также при изменении параметров внешней среды (температура наружного воздуха) оптимизацию режимов энергопривода буровых установок диагностику технического состояния ГТУ, две, центробежных нагнетателей газа и компрессоров повышение экономичности ГТУ и ДВС за счет утилизапии теплоты уходящих газов и т. д.  [c.158]


Корпусные детали являются базовыми деталями машин, на которых монтируются отдельные сборочные едгхницы. По служебному назначению и конструктивным формам они подразделяются на группы (рис. 11.1) а) корпусные детали коробчатой формы в виде параллелепипеда корпуса редукторов, коробок скоростей, шпиндельных бабок и т. п. б) корпусные детали с отверстиями и полостями, протяженность которых превышает их поперечные размеры блоки цилиндров, двигателей, компрессоров, корпуса задних бабок в) корпуса деталей сложной пространственной формы корпуса паровых И газовых турбин, центробежных насосов, коллекторов, вентилей и т. п. г) корпуса деталей с направляющими столы, каретки, салазки, планшайбы и т. п. д) корпусные детали типа кронштейнов, угольников, стоек плит, крышек и т. п. Следует отметить, что деление деталей на группы является условным, т. к. некоторые из них нельзя отнести к определенной группе, и приме-  [c.227]

По характеру рабочего процесса различают активные и реактивные лопатки турбин и компрессоров (центробежных и осевых) по форме — лопатки с постоянным по длине и переменным профилем (закрученные или винтовые) по способу сопряжения друг с другом — лопатки с утолщ,енным хвостом и лопатки с промежуточными телами по роду рабочего тела — лопатки паровых турбин, газовых турбин и компрессоров по температурному режиму — лопатки неохлаждаемые и охлаждаемые по способу изготовления —  [c.27]

Лопаточные компрессоры изготовляют в виде центробежных или осевых. Для наддува в большинстве случаев применяют центробежные нагнетатели. На рис. 72 приредена схема установки центробел ного нагнетателя с приводом от газовой турбины. Такая установка называется турбокомпрессором. Продукты сгорания из цилиндров двигателя 1 подводятся к ресиверу Л, а из него на рабочие лопатки 4 газовой турбины. На одном валу с газовой турбиной установлен центробежный нагнетатель 5. Регулирование частоты вращения вала газовой турбины осуществляется путем отвода части продуктов сгорания в атмосферу через регулирующую заслонку 2.  [c.166]

Оа8—6, N2 остальное из газового холодильника при температуре 50 °С через всасывающий патрубок подводится к рабочему колесу первой ступени, затем проходит диффузор и направляется последовательно к рабочим колесам следующих ступеней. Из диффузора четвертой ступени газ, нагретый до 260—280 °С, поступает в улитку и через нагнетательный патрубок направляется в окислительную и адсорбционную колонны. В центробежных компрессорах с промежуточным охлаждением нитрозный газ после второй ступени поступает в газоох-ладитель, а затем по обычному пути в третью и чет- вертую ступени. Отходя-  [c.30]

В газотурбинных двигателях (ГТД) наиболее нагруженными деталями являются рабочие лопатки компрессора и турбины. Они работают в условиях высоких и быстросменяющихся температур и агрессивной газовой среды. В материале лопатки возникают большие напряжения растяжения от центробежных сил и значительные вибрационные напряжения изгиба и кручения от газового потока, амплитуда и частота которых меняются в широких пределах. Быстрая и частая смена температуры приводит к возникновению в лопатках значительных термических напряжений.  [c.3]

Другая область применения уплотнений — это герметизащ1я полостей в машинах, содержащих газы и жидкости при высоких давлениях или под вакуумом. В роторных машинах (в паровых и газовых турбинах, центробежных и аксиальных компрессорах и т. д.) необходимо уплотнение вращающихся валов и роторов в поршневых машинах — уплотнение возврат-но-поступательно движущихся частей (поршней, плунжеров, скалок).  [c.86]

Применение наддува четырёх- и двухтактных двигателей обеспечивает снижение веса двигателей на 1 л. с. и увеличение мощности при том же тепловом напряжении [14]. Наддув осуществляют помощью воздуходувок, выполняемых в виде вентиляторов Рута или центробежных компрессоров с окружной скоростью на лопатках 320—380з//сек [12]. Привод воздуходувки может быть механическим, электрическим или газовым. Последний осуществляется за счёт энергии выхлопных газов двигателя (фиг. 15). Наддув можно производить при существующей степени сжатия е или при уменьшенной. Конечное давление сжатия р .  [c.508]

Фиг. 49. Схема управления газотурбовоза ВВС. А, В — посты управления локомотивом 1 — компрессор 2 — камера сгорания 3 — газовая турбина 4 — воздухоподогреватель 5 — зубчатая передача в — генератор / — топливный насос 3—масляный насос 9 — вспомогательный насос /О — масляный холодильник Л — перепускной клапан /2 — форсунка 3 — воспламеняющий стержень /4 — главный маховичок управления с двойным клапанам и реостатом возбуждения 15 -— рукоятка реверсирования 16 — регулятор температуры 17 — регулировка холостого хода 28—трубопровод системы управления подачей топлива 29 — трубопровод системы регулирования скорости 22—поршень, управляющий подачей топлива через форсунку 2/ — центробежный регулятор 22—кулачковый вал для регулирования скорости из кабины водителя (воздействует на муфту регулятора 22) 23 — труба к регулятору возбуждения 24 24 — регулятор возбуждения с врашаюнгимся поршнем 25 — регулирующий поршень для регулятора возбуждения 26 — поршень, регулирующий количество топлива 27 — регулятор безопасности 28 — предохранительный клапан 29 — обратный клапан 30 — температурный регулятор безопасности 32 — выпуск масла и дроссельные клапаны 32 — масляная труба для топливорегулирующей системы. Фиг. 49. <a href="/info/432785">Схема управления газотурбовоза</a> ВВС. А, В — <a href="/info/610334">посты управления</a> локомотивом 1 — компрессор 2 — <a href="/info/30631">камера сгорания</a> 3 — <a href="/info/884">газовая турбина</a> 4 — воздухоподогреватель 5 — <a href="/info/1089">зубчатая передача</a> в — генератор / — <a href="/info/30669">топливный насос</a> 3—<a href="/info/27438">масляный насос</a> 9 — <a href="/info/530846">вспомогательный насос</a> /О — <a href="/info/106080">масляный холодильник</a> Л — <a href="/info/319881">перепускной клапан</a> /2 — форсунка 3 — воспламеняющий стержень /4 — главный маховичок управления с <a href="/info/93469">двойным клапанам</a> и реостатом возбуждения 15 -— рукоятка реверсирования 16 — <a href="/info/28628">регулятор температуры</a> 17 — <a href="/info/718042">регулировка холостого хода</a> 28—<a href="/info/345400">трубопровод системы</a> управления <a href="/info/679498">подачей топлива</a> 29 — <a href="/info/345400">трубопровод системы</a> <a href="/info/187021">регулирования скорости</a> 22—поршень, управляющий <a href="/info/679498">подачей топлива</a> через форсунку 2/ — <a href="/info/30942">центробежный регулятор</a> 22—кулачковый вал для <a href="/info/187021">регулирования скорости</a> из кабины водителя (воздействует на <a href="/info/281022">муфту регулятора</a> 22) 23 — труба к регулятору возбуждения 24 24 — регулятор возбуждения с врашаюнгимся поршнем 25 — регулирующий поршень для регулятора возбуждения 26 — поршень, регулирующий количество топлива 27 — регулятор безопасности 28 — <a href="/info/29373">предохранительный клапан</a> 29 — <a href="/info/27965">обратный клапан</a> 30 — температурный регулятор безопасности 32 — выпуск масла и дроссельные клапаны 32 — масляная труба для топливорегулирующей системы.
Газовый (топливный) компрессор центробежного типа, 10-ступенчатый, трехкорпусный. Число оборотов 16 300 в минуту. Производительность компрессора 3100 м 1ч. Давление на входе 3,5 ama, на выходе 22 ama. Мощность электродвигателя, от которого приводится компрессор, 2000 л. с.  [c.83]

До 1952 г. фирма Кларк была известна как производитель поршневых компрессоров и двигателей внутреннего сгорания. В 1952 г. фирма выпустила газотурбинную установку мощностью 5500 л. с., которая предназначалась для привода центробежного газового компрессора и была установлена на компрессорной станции в Марехиде (штат Кентукки, США) магистрального газопровода компании Теннеси Газ Транс-мишн К"  [c.143]

Для использования значительной скорости за рабочим колесом установлен осевой и радиальный диффузоры. Компрессор для воздуха и компрессор для доменного газа размещены в общем корпусе. Общий ротор компрессоров показан на рис. 5-10. Он вращается также при 8500 об1мин. Воздушный компрессор одноступенчатый, с радиальными лопатками. Максимальная окружная скорость 385 м1сек. Газовый компрессор центробежного типа, четырехступенчатый, с радиальными лопатками и безлопаточным диффузором.  [c.161]


Из колошника печи 1 газ (с объемным содержанием водорода 66,0%, окиси углерода 33,0%, метана 0,4%, углеводородов 0,4%, сероводорода 0,1% и азота 0,1%) направляется в систему газоочистки — пылеуловитель 3 и скруббер 4. Очищенный от пыли газ поступает в теплообменник 6, нагревается в нем до температуры 650 К, затем в смесителе 7 смешивается с водяным паром. Образуюш,аяся смесь подается в одноступенчатый конвертор 8, где осуществляется частичная конверсия СО в СОа на железохромовом катализаторе. Из конвертора газ поступает в регенератор 6, а оттуда — в вихревую трубу 9. Внутри трубы при вращении вихря газа за счет центробежных сил сравнительно тяжелые молекулы углекислого газа, сероводорода, азота и окиси углерода концентрируются на периферии, а легкие молекулы водорода и метана — в центре вихря. Из центра вихревой трубы часть газа с повышенным содержанием водорода (90% по объему) отводится при давлении 3 атм в компрессор 10 с, впрыском воды, где сжимается до рабочего давления, и направляется на рециркуляцию в смеситель 17. Вторая часть более тяжелого газа с содержанием водорода 66,4% и окиси углерода 33,1% (по объему), представляющего собой газовый продукт, отводится из вихревой трубы 9 в компрессор 11 с промежуточным охлаждением, сжидхается в нем до давления 100 атм и оттуда направляется в установку синтеза 14. Наконец, третья часть самого тяжелого газа с повышенным одержанием углекислого газа, углеводородов, сероводорода,окиси углерода и азота, представляющего собой топливный газ, через задвижку в противоположном конце вихревой трубы 5 отводится в абсорбер 13, очищается в нем от сернистых соединений и затем подается в ПГТУ 12 и камеру сгорания 15. Водяной пар, расходуемый на газификацию угля и конверсию окиси углерода, генерируется в парогенераторе 16. Очистка газа, загрязненного радиоактивными осколками деления ядер урана, осуществляется в абсорбере 18. Очищенный газ используется в качестве дополнительного топлива в камере сгорания 15. Привод компрессоров 10 и  [c.115]


Смотреть страницы где упоминается термин Компрессоры газовые центробежные : [c.47]    [c.18]    [c.173]    [c.8]    [c.174]    [c.221]    [c.207]    [c.155]    [c.136]    [c.180]    [c.347]    [c.12]    [c.12]    [c.70]   
Справочник энергетика промышленных предприятий Том 3 (1965) -- [ c.0 ]



ПОИСК



410 центробежном

Газовые компрессоры

Компрессор центробежный

Компрессорий

Компрессоры



© 2025 Mash-xxl.info Реклама на сайте