Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плоская периодическая контактная задача

Для поверхностей с регулярным рельефом (например, волнистая поверхность) для исследования системы уравнений (1.4) и (1.5) могут быть применены методы решения периодических контактных задач. В плоской постановке периодические контактные задачи для упругих тел при отсутствии сил трения рассматривались в [146] и [239]. В [93, 94] дано решение плоской периодической контактной задачи с учётом сил трения, полученное с помощью формул Колосова-Мусхелишвили и аппарата автоморфных функций. Для периодического штампа, профиль которого описывается функцией  [c.18]


И. Г. Горячевой, Ю. Ю. Маховской [39] рассмотрена плоская периодическая контактная задача о скольжении упругого шероховатого индентора по вязкоупругому слою, сцепленному с упругой полуплоскостью. Для описания механических свойств слоя использовалась модель Кельвина. Получено линейное интегро-дифференциальное уравнение, в результате численного решения которого найдены распределение контактных давлений, размеры и положение области контакта. Полученные результаты использовались для анализа влияния механических и геометрических свойств тонких покрытий, а также параметров шероховатости взаимодействующих тел на контактные характеристики и деформационную составляющую коэффициента трения.  [c.465]

В параграфе исследуется плоская осесимметричная и плоская периодическая контактные задачи для слоя, область активного загружения которого гораздо больше его толщины. Строятся проникающие и краевые решения задач. Производится их сращивание. Рассматриваются численные примеры.  [c.275]

Плоская периодическая контактная задача [94  [c.285]

С целью исследования влияния микрогеометрии индентора и несовершенной упругости поверхностного слоя на напряжён-но-деформированное состояние тел при трении скольжения ниже рассмотрена периодическая контактная задача об установившемся движении упругого индентора по вязкоупругому слою, сцепленному с упругим основанием (в плоской квазистатической постановке).  [c.264]

В работе [36] изложена схема решения плоской статической контактной задачи для кольца Щ г Д2, взаимодействующего без трения с системой периодически расположенных на поверхности г = штампов, когда их радиальные перемещения, вообще говоря, не равны друг другу, а на поверхности г = К2 отсутствуют нормальные перемещения и касательные напряжения (задача 13, рис. 13).  [c.174]

Ниже приведены решения двух контактных задач — периодической контактной задачи об установившемся скольжении упругого индентора по вязкоупругому слою, сцепленному с упругим основанием (в плоской квазистатической постановке), и задачи о качении упругого цилиндра по упругому основанию, имеюш ему тонкий вязкоупругий поверхностный слой, — которые в развитие теории трения, разработанной А. Ю. Ишлинским, позволяют изучить роль несовершенной упругости поверхностного слоя, параметров микрогеометрии индентора и относительного проскальзывания поверхностей при качении и скольжении упругого индентора по упругому основанию.  [c.280]


К первой группе относятся контактные задачи для тел конечных размеров канонической формы, граничные поверхности которых совпадают с координатными поверхностями цилиндрических, декартовых, полярных, биполярных и сферических координат. Ко второй группе относятся контактные задачи для тел конечных размеров неканонической формы, когда часть граничных поверхностей не является координатной поверхностью (декартовы и цилиндрические координаты). К третьей группе относятся контактные задачи для полубесконечных тел (полоса, цилиндр) периодической структуры. И к четвертой группе относятся плоская и пространственные контактные задачи для слоя.  [c.22]

Исследование влияния жидкости, заполняющей объем между поверхностью синусоидального индентора и упругого полупространства, на контактные характеристики проведено Кузнецовым [55], рассмотревшим плоскую периодическую задачу для упругих тел при наличии между ними сжимаемой жидкости.  [c.422]

Теория случайного поля, как и некоторые другие методы описания шероховатых поверхностей, позволяет получить спектральные характеристики поверхности. Как упоминалось выше, известно решение плоской периодической задачи для синусоидального штампа. В случае полного контакта непосредственное применение этого решения и принципа суперпозиции может быть использовано для определения контактных характеристик. В [40] проведено определение контактных характеристик полного контакта на основе теории случайного поля. Полученные соотношения дали возможность провести оценки зависимости площади фактического контакта от номинального давления для неполного контакта при относительной фактической площади контакта, близкой к единице. Пе-посредственное использование спектральных характеристик для расчета контактных параметров дискретного контакта в общем случае не представляется возможным в силу нелинейности контактных задач с неизвестной площадкой контакта и неприменимости принципа суперпозиции для их решения.  [c.430]

В [4] предложен метод решения плоской контактной задачи для упругой полуплоскости, коэффициент износа которой является периодической функцией, который основан на представлении искомых функций в виде степенных рядов по малому временному параметру.  [c.452]

В третьей главе исследуются плоские смешанные задачи для упругих тел, усиленных кольцеобразными накладками и тонкостенными включениями. Здесь дано решение задачи о передаче нагрузки от кольцеобразной накладки к упругой бесконечной пластине. Исследуется задача о напряженном состоянии упругой плоскости с круглым отверстием, усиленным по обводу кольцеобразными накладками. Показано, что такое усиление благоприятно влияет на концентрацию напряжений в окружном направлении. Изучено напряженное состояние тяжелого круглого диска, усиленного кольцеобразными накладками и подвешенного нерастяжимыми лентами к одной неподвижной точке. Далее, решаются задачи о контактном взаимодействии прямоугольных тонкостенных включений конечной и полубесконечной длин, а также двух одинаковых или периодически расположенных включений с упругой плоскостью. Предлагается способ определения осевых усилий на концах включений, основанный на использовании выражений коэффициентов интенсивности осевых напряжений в плоскости, содержащей разрезы соответствующих форм.  [c.12]

Контактная обобщенно-периодическая задача теории упругости для кольца. Предлагается схема решения плоской статической контактной задачи теории упругости для кольца, взаимодействующего с системой периодически расположенных жестких штампов, когда их радиальные перемеш,ения, вообш,е говоря, не равны друг другу [188].  [c.131]


Прежде всего рассмотрена локальная задача о контакте между недеформируе-мой четвертью плоскости и полуплоскостью, находящейся в условиях ползучести. Она эквивалентна известной задаче Черепанова Райса Хатчинсона о трещине. Отсюда получено напряженно-деформированное состояние вблизи угла как функция одного свободного параметра. Внутреннее решение для тонкого слоя получено асимптотическим анализом, для полупространства — методом Н.Х.Арутюняна, оба решения с)п ь функции еще одного свободного параметра. Размер погранслоя может быть рассмотрен как третий свободный параметр. Интегральное условие статики системы и требование непрерывности основных характеристик контактной задачи приводят к нелинейному алгебраическому уравнению для численного определения свободных постоянных. В частных сл) аях его решение может быть дано явными формулами. Помимо названных задач решена периодическая задача, моделирующая изготовление штамповкой плиты с ребрами. Более того, полностью изучены как отдельные случаи локальное решение вблизи вершины угла при ползучести (произвольный угол, различные граничные условия), асимптотика осесимметричной задачи вблизи конической точки (произвольный зп ол, различные граничные условия), а также найдены внутренние асимптотики плоской задачи для тонкого слоя из материалов Надаи и Эмбера.  [c.539]

Рассматриваемая задача является периодической с периодом I и относится к типу Л. Поскольку имеет место полный контакт двух тел по плоскости z = О, начальное давление распределено равномерно, т.е. р(а ,0) = Р(0)/1 (а G (—схэ,-Ьсхэ)). При изнашивании имеет место формоизменение первоначально плоской поверхности полупространства и перераспределение контактного давления p x,t). Так как движение происходит в направлении, перпендикулярном плоскости Oxz, можно пренебречь влиянием сил трения на распределение контактных давлений и использовать оператор А в форме (8.4) для определения упругих перемещений границы полупространства. Упругие Uz x, t) и износные Wif x,i) перемещения границы, а также контактное давление р х, t) являются периодическими функциями координаты X. Они могут быть определены из решения системы уравнений (7.18)-(7.20), в которых оператор А имеет вид (8.4), уравнение износа описывается соотношением (8.8), а условие контакта (7.20) примет вид  [c.408]

В [17, 49] рассмотрены задачи о движении периодического упругого индентора по границе упругого основания при наличии на его поверхности тонкого вязкоупругого слоя (в плоской постановке). В качестве модели слоя взяты тело 1У1аксвелла [49] и тело Кельвина [17]. Изучено влияние относительных характеристик слоя, плотности расположения контактных зон, а также скорости движения индентора на размер и относительное смещение площадок контакта. Показано, что несимметрия расположения площадок контакта и давлений на них приводит к возникновению деформационной составляющей силы трения, величина которой существенно зависит от скорости движения индентора. Характер этой зависимости определяется свойствами поверхностного слоя.  [c.422]

Во второй главе дано исследование плоских смешанных задач для упругих тел, усиленных прямоугольными накладками. Здесь рассматривается задач-а о передаче нагрузки от полубесконечной накладки к упругой полуплоскости и плоскости. Нри этом модуль упругости накладки по ее длине изменяется по произвольному закону. В случае однородной накладки при помощи одного интегрального соотношения и аппарата полиномов Чебышева — Эрмита разрешающее интегро-дифференциальное уравнение задачи сведено к дискретному уравнению Винера — Хопфа довольно простой структуры. Таким путем удается получить принципиально повое замкнутое решение задачи о полубесконечной накладке. Далее излагается решение задачи о контактном взаимодействии Стрингера конечной длины и переменной жесткости с упругой полуплоскостью или плоскостью, описываемой интег-ро-дифференциальным уравнением Прандтля при определенных граничных условиях. На основе аппарата полиномов Чебышева это уравнение сведено к вполне или квазивполне регулярной бесконечной системе. Здесь же обсуждены многие частные случаи и произведен их численный анализ. Эта же задача исследуется в случае двух одинаковых стрингеров или периодической системы стрингеров. Дано построение решений задачи о взаимодействии стрингера конечной длины с полуплоскостью, когда концентрация напряжений на концах участка контакта отсутствует. Излагаются другие методы решения задачи о взаимодействии накладки конечной длины с полуплоскостью. Именно, используются асимптотические методы и метод специальных ортонормировап-  [c.11]

В эйлеровых переменных невозможно брать особенно мелкую сетку вблизи скачка, так как его положение заранее неизвестно. В лагранжевых переменных с перестройкой ячеек развивающийся скачок может быть рассчитан на мелкой сетке. Этот подход плодотворен в случае одномерных задач (Рихтмайер [1957]), таких, как распространение плоской или сферической ударной волны, но трудноосуществим для многомерных задач (Год [1960]). Макнамара [1966, 1967] разработал метод выделения разрывов в подвижной эйлеровой сетке, которая периодически подстраивается для слежения за контактными разрывами и скачками. Будучи в целом успешным, метод с подвижной сеткой приводит к некоторым ошибкам.  [c.344]


Смотреть страницы где упоминается термин Плоская периодическая контактная задача : [c.405]    [c.44]    [c.208]   
Смотреть главы в:

Контактные задачи теории ползучести  -> Плоская периодическая контактная задача



ПОИСК



Задача контактная плоская

Задача периодическая

Контактная задача

Контактная периодическая

Плоская задача



© 2025 Mash-xxl.info Реклама на сайте