Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Контактные задачи для тел периодической структуры

Контактные задачи для тел периодической структуры.  [c.27]

КОНТАКТНЫЕ ЗАДАЧИ ДЛЯ ТЕЛ ПЕРИОДИЧЕСКОЙ СТРУКТУРЫ  [c.223]

В 1.1 этой главы дается краткая постановка контактных задач для тел конечных размеров канонической формы для цилиндра, прямоугольника, кольцевого сектора, кольца, усеченного клина, сектора сферического слоя, сферического слоя и усеченного конуса (п. 1.1.1), контактных задач для тел конечных размеров неканонической формы в виде криволинейной трапеции и тела вращения с криволинейной образующей (п. 1.1.2), динамических контактных задач для слоя и цилиндра периодической структуры (п. 1.1.3), пространственных контактных задач для слоя, лежащего на жестком основании или на упругом полупространстве с учетом сил трения в зоне контакта (п. 1.1.4).  [c.13]


К первой группе относятся контактные задачи для тел конечных размеров канонической формы, граничные поверхности которых совпадают с координатными поверхностями цилиндрических, декартовых, полярных, биполярных и сферических координат. Ко второй группе относятся контактные задачи для тел конечных размеров неканонической формы, когда часть граничных поверхностей не является координатной поверхностью (декартовы и цилиндрические координаты). К третьей группе относятся контактные задачи для полубесконечных тел (полоса, цилиндр) периодической структуры. И к четвертой группе относятся плоская и пространственные контактные задачи для слоя.  [c.22]

На основе использования однородных решений развит аналитический метод решения стационарных динамических контактных задач для полубесконечных тел, имеющих периодическую структуру механических свойств вдоль продольной координаты. На примере слоя и цилиндра изучены особенности возбуждения и распространения колебаний в таких волноводах. Показано, что существуют чередующиеся промежутки на всем бесконечном интервале изменения частот, когда такой волновод соответственно открыт или заперт. Также показано существование В-резонансов (неограниченного возрастания амплитуды колебаний тяжелого штампа) на тех частотах (в том числе и на высоких), когда волновод закрыт.  [c.264]

Контактные задачи для тел периодической структуры с непериодическим нагружением имеют значительно меньшую библиографию. Здесь следует отметить работы М. Л. Бурышкина и его композиционный метод [80, 81]. Задачам механики сплошной среды для областей периодической структуры, в том числе и о распространении волн в телах и волноводах периодической структуры, посвящены работы Л. Бриллюэна, М. Пароди [78], Л.А. Вайнштейна [83 В. В. Владимирского [85  [c.12]

Во второй главе дано исследование плоских смешанных задач для упругих тел, усиленных прямоугольными накладками. Здесь рассматривается задач-а о передаче нагрузки от полубесконечной накладки к упругой полуплоскости и плоскости. Нри этом модуль упругости накладки по ее длине изменяется по произвольному закону. В случае однородной накладки при помощи одного интегрального соотношения и аппарата полиномов Чебышева — Эрмита разрешающее интегро-дифференциальное уравнение задачи сведено к дискретному уравнению Винера — Хопфа довольно простой структуры. Таким путем удается получить принципиально повое замкнутое решение задачи о полубесконечной накладке. Далее излагается решение задачи о контактном взаимодействии Стрингера конечной длины и переменной жесткости с упругой полуплоскостью или плоскостью, описываемой интег-ро-дифференциальным уравнением Прандтля при определенных граничных условиях. На основе аппарата полиномов Чебышева это уравнение сведено к вполне или квазивполне регулярной бесконечной системе. Здесь же обсуждены многие частные случаи и произведен их численный анализ. Эта же задача исследуется в случае двух одинаковых стрингеров или периодической системы стрингеров. Дано построение решений задачи о взаимодействии стрингера конечной длины с полуплоскостью, когда концентрация напряжений на концах участка контакта отсутствует. Излагаются другие методы решения задачи о взаимодействии накладки конечной длины с полуплоскостью. Именно, используются асимптотические методы и метод специальных ортонормировап-  [c.11]



Смотреть страницы где упоминается термин Контактные задачи для тел периодической структуры : [c.13]    [c.283]   
Смотреть главы в:

Аналитические методы в контактных задачах теории упругости  -> Контактные задачи для тел периодической структуры



ПОИСК



Динамическая контактная задача для полосы периодической структуры

Динамическая контактная задача для цилиндра периодической структуры

Задача периодическая

Контактная задача

Контактная периодическая

Структура периодическая



© 2025 Mash-xxl.info Реклама на сайте