Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициент полезного привода

Рассмотрим теперь вопрос об определении коэффициента полезного действия нескольких механизмов, соединенных последовательно друг с другом. Пусть имеется п последовательно связанных между собой механизмов (рис. 14.3). Первый механизм приводится в движение движущими силами, совершающими работу Л д. Так как полезная работа каждого предыдущего механизма, затрачиваемая на производственные сопротивления, является работой движущих сил для каждого последующего, то коэффициент полезного действия rii первого механизма равен  [c.310]


Коэффициент полезного действия современных ТЭС с паровыми турбинами достигает 40 %, с газовыми турбинами — не превышает 34 %. На ТЭС с паротурбинным приводом возможно использование любого вида топлива газотурбинные станции пока используют только жидкое и газообразное. Однако паровая турбина не столь маневренна, как газовая. Дело в том, что давление пара, подаваемого в турбину, высокое — до 23,5 МПа и корпус турбины для обеспечения прочности очень массивен. Это не позволяет быстро и равномерно прогреть паровую турбину при пуске. Газовые турбины работают при давлениях рабочего тела не более 1 МПа, их корпус много тоньше, прогрев осуш,ествляется быстрее. Поэтому газотурбинные агрегаты на ТЭС рассматриваются в перспективе как пиковые — для обеспечения выработки электроэнергии при кратковременном увеличении в ее потребности — для снятия пиков электрической нагрузки.  [c.185]

Среди показателей качества зарядных процессов наибольший интерес представляют быстродействие и коэффициент полезного действия (КПД). Рост этих показателей увеличивает степень использования генератора и максимальную среднюю мощность, генерируемую в емкостный накопитель. Это приводит к улучшению массовых и габаритных характеристик зарядной системы, что особенно важно для передвижных установок. Одновременно появляется возможность увеличения частоты следования разрядных импульсов.  [c.220]

Коэффициент полезного действия всего привода равен произведению частных к. п. д. (последовательное соединение)  [c.265]

Определить производительность насоса и требуемую мощность электродвигателя при давлении р — 80-10 Па. Коэффициент наполнения насоса а = 0,85, коэффициент полезного действия насоса fi = 0,65. Насос приводится в действие от электродвигателя посредством ременной передачи, коэффициент полезного действия которой Лп = 0,97.  [c.116]

Кавитация оказывает очень вредное действие на работу насосов — существенно снижает их коэффициент полезного действия и, что наиболее опасно, приводит (если она длится продолжительное время) к разрушению основных рабочих органов насосов.  [c.98]

В современных гидравлических турбинах, центробежных насосах, гребных винтах, обычно работающих при больших числах оборотов, в отдельных местах рабочих лопаток и лопастей создаются очень большие скорости движения жидкости, также благоприятствующие возникновению кавитации. Кавитация оказывает очень вредное действие на работу этих установок вызывает недопустимо большие их колебания, увеличивает потери энергии на трение, т. е. снижает коэффициент полезного действия, и, что наиболее опасно, приводит к разъеданию металла.  [c.242]


К параметрам машин относят общие и специфические параметры. К общим параметрам относят производительность, скорости рабочих движений выходных звеньев, мощность привода, коэффициент полезного действия, массу, габаритные размеры к специфическим — параметры, которые характерны для конкретного вида машин. Так, например, для грузоподъемных машин указывают высоту подъема груза, для водяных насосов — высоту подъема и глубину всасывания воды, для многоступенчатого компрессора для сжатия воздуха — давление воздуха на выходе каждой ступени. Очевидно, что для машин специального назначения могут быть указаны и другие параметры.  [c.10]

Полезная работа 1ц изображается в р, 0-диаграмме площадью, заключенной внутри контура цикла (площадь 1234). На рис. 6.5,а видно, что полезная работа равна разности между технической работой, полученной в турбине (площадь 6345), и технической работой, затраченной на привод компрессора (площадь 6215). Площадь цикла 1234 в Т, s-диаграмме эквивалентна этой же полезной работе (рис. 6.5,6). Теплота, превращенная в работу, получается как разность между количествами подведенной (площадь 8237) и отведенной 2 (площадь 1478) теплоты. Коэффициент полезного действия идеального цикла ГТУ  [c.64]

Совершенство ТЭС определяется ее коэффициентом полезного действия. КПД станции без учета расходов энергии на собственные нужды—привод электродвигателей вспомогательных агрегатов и др.— называется КПД брутто  [c.210]

Одним из главных преимуществ индивидуального привода перед трансмиссионным является больщая экономия энергии, расходуемой в силовом процессе производства. И хотя потери в электромоторах при одиночном приводе увеличились по сравнению с групповым почти в 2 раза, так как коэффициент полезного действия крупных электромоторов значительно выше мелких, в целом энергия, затраченная на полезную работу при индивидуальном приводе, увеличилась в 2,3 раза по сравнению с групповым.  [c.25]

Основными источниками выхода ВЭР в различных отраслях промышленности являются технологические агрегаты. Непосредственное потребление топлива при современных конструкциях технологических агрегатов и схемах производства приводит к большим потерям подводимой извне энергии ископаемого топлива. Применяемые в настоящее время технологии в ряде случаев несовершенны с энергетической точки зрения, так как допускают работу агрегатов с низкими коэффициентами полезного использования энергии. Кроме того, ряд технологических процессов за счет плохой организации внутреннего использования энергии, т. е. возврата потерь энергии в технологический цикл, отличается повышенными расходами топлива на производство промышленной продукции.  [c.39]

При выборе значения [0д3 следует принять во внимание то обстоятельство, что замыкающее усилие, препятствующее размыканию системы на выбеге, является весьма ощутимой дополнительной нагрузкой для звеньев и кинематических пар механизма на разбеге, в связи с чем увеличение этой силы приводит к повышенному износу, понижает коэффициент полезного действия механизма, долговечность и надежность механизма. Поэтому представляется целесообразным принять [0д] 0,75-г-0,8. Приведенному ограничению при учете (5.184) можно придать следующий вид  [c.241]

Конструкция токарных полуавтоматов последних моделей отличается рядом преимуществ перед ранее освоенными. Уделено большое внимание повышению мощности и жесткости станков и приспособлению их для скоростной обработки, повышению коэффициента полезного действия привода путем сокращения длины кинематической цепи от мотора к шпинделю. Сменные кривые (кулачки) для привода движения суппортов заменены постоянными, улучшено управление станком.  [c.78]

По данным вычислений построена характеристика привода — зависимость момента на выходе от угла поворота ротора (рис. 34). По графику можно определить область заклинивания механизма, выбрать наиболее выгодный участок работы привода и определить его коэффициент полезного действия, а кроме этого, получить необходимые силовые факторы для расчета деталей механизма.  [c.131]


Несмотря на усовершенствования в конструкциях каждого из отдельных узлов трансмиссии, доля мощности на преодоление потерь энергии росла, а общий коэффициент полезного действия неуклонно снижался. Поскольку потери резко возрастали вместе с увеличением количества передаваемой энергии и расстояний ее передачи, то ограничивалась мощность отдельных силовых установок и, как следствие, затруднялась концентрация производства. В условиях непрерывно развивающейся крупной промышленности это было существенным недостатком паровой энергетики, приводившим ее в состояние кризиса [5].  [c.49]

К последней четверти XIX в. паровой двигатель для морских судов уже по сути исчерпал возможности принципиального совершенствования. Дальнейшее развитие морского флота стало зависеть от внедрения принципиально новых видов двигателей. Кроме того, переход к использованию гребного винта в качестве основного движителя корабля поставил проблему совершенствования двигателя. Паровой двигатель, имевший прямолинейное движение рабочего штока, требовал специального механизма перевода такого движения во вращательное, что снижало коэффициент полезного действия. Двигатель типа турбины внес революционное изменение во всю систему двигатель — движитель — корабль . Это объясняется тем, что возрастание скоростей вращения винта требует перестройки форм движителя, а изменение формы винта в совокупности с увеличением скорости вращения вызывает рост скорости судна, что приводит к существенной модернизации всей конструкции кораблей.  [c.237]

Шаровая мельница — это огромный сварной барабан с насыпанными в него шарами из твердой стали. Когда мощные электромоторы приводят барабан во вращение, шары с грохотом перекатываются и мнут уголь, руду или шлак, истирая их в порошок. Сами шары при этом тоже изнашиваются — на каждую тонну помола износ составляет примерно два килограмма. Легко подсчитать, что безвозвратные потери металла измеряются миллионами тонн. А электроэнергия Ее шаровые мельницы тратят прямо-таки безбожно. Мы справедливо возмущаемся паровозами за их недостаточный к.п.д., но коэффициент полезного действия шаровых мельниц еще в 100 раз ниже. По подсчетам энергетиков, шаровые мельницы бесполезно переводят в тепло примерно пятую часть всей производимой в нашей стране электроэнергии.  [c.141]

Но, как очень часто бывает в технике, при таком изменении конструкции возникает масса сопутствующих, весьма трудноразрешимых проблем. И от них зависит, смогут ли эти суда выйти на океанские просторы. Так, пока корабль лишь слегка приподнимается над поверхностью, передать вращение погруженному в воду винту несложно. Просто-напросто наклонный вал, на котором он сидит, делают немного длиннее. Для корабля, поднявшегося на несколько метров, такой способ уже непригоден. Непригодны и конические зубчатые передачи. Они не справляются с большой мощностью, вызывают сильную вибрацию корпуса. Можно было бы поставить в машинном отделении электрогенератор и питать энергией погруженный в воду электромотор, вращающий судовой винт. Однако вес такой сложной системы получается высоким, она требует много места, а коэффициент полезного действия при каждом преобразовании энергии из одного вида в другой заметно падает. Может быть, вообще отказаться от гребного винта и поставить на судно воздушный винт-пропеллер Расчеты показывают, что из-за неизбежно малого его диаметра пропеллер будет очень неэкономичен лишь третья часть мощности двигателя превратится в полезную работу. Еще хуже обстоит дело с чисто реактивным приводом при сравнительно небольших скоростях движения на подводных крыльях девять десятых мощности пойдут на бесполезный разгон выхлопной струи и только одна десятая — на продвижение судна.  [c.204]

Уменьшение и увеличение количества СОг против нормы указывает на появление в продуктах сгорания окиси углерода или избытка воздуха, поступившего в топку. Недостаток воздуха приводит к неполному сгоранию газа, а избыток — к чрезмерному охлаждению температуры пламени. В том и другом случаях это ведет к снижению коэффициента полезного действия установки, к плохому использованию газового топлива, к его перерасходу.  [c.17]

Серьезным вопросом выполнения таких установок является выбор привода питательных насосов — электрического или парового. На фиг. 3356 показаны питательные насосы с электрическим приводом. Мощность турбогенераторов данной установки по 100 тыс. кет, производительность каждого прямоточного котлоагрегата 250 т/час. Вторичный газовый перегрев производится, при 3 29 ата. Число регенеративных отборов пара — семь. Коэффициент полезного действия электростанции такого типа достигает 35 36%.  [c.528]

В турбокомпрессоре сжимается пар 3,5 ата, 180° до 6 ата. Компрессор приводится в действие паровой турбиной, в которой пар расширяется с 29 ата, 400° до 6 ата. Коэффициент полезного действия турбины  [c.69]

Компрессорные машины. В производстве завода находилось 32 типа центробежных компрессорных машин. Из этого количества 12 типов машин были запущены в серийное производство в 1957—58 гг. и, следовательно, не могли быть проверены в длительной эксплуатации. Несмотря на то, что показатели этих машин (коэффициент полезного действия, весовые данные и габариты) были по тому времени на высоком уровне, длительная их эксплуатация определила необходимость конструктивной их доработки с целью улучшения технологичности, качества, а также повышения надежности и долговечности. Особенно это относилось к нагнетателям 280-11-1 с электрическим приводом и 280-11-2 с приводом от газовой турбины ГТ-700-4. Обнаруженные в процессе эксплуатации дефекты машин были следствием недостаточной конструктивной отработки деталей и узлов нагнетателей и запуском их в серийное производство без доводки на стендах завода. Многие машины не удовлетворяли по своим технико-экономическим показателям уровню техники того периода и подлежали снятию с производства.  [c.475]


От этого недостатка свободен двигатель внутреннего сгорания другого типа — газовая турбина. Имея высокий термический коэффициент полезного действия и обладая при этом всеми преимуществами ротационного двигателя, т. е. возможностью сосредоточения больших мощностей в малогабаритных установках, газовая турбина является весьма перспективным двигателем. Ограниченное применение газовых турбин в высоко экономичных крупных энергетических установках в настоящее время объясняется в основном тем, что из-за недостаточной жаропрочности современных конструкционных материалов турбина может надежно работать в области температур, значительно меньших, чем двигатели внутреннего сгорания поршневого типа, что приводит к снижению термического к. п. д. установки. Дальнейший прогресс в создании новых прочных и жаростойких материалов позволит газовой турбине работать в области более высоких температур.  [c.330]

Коэффициент полезного действия брутто не может в полной мере служить мерилом экономичности котельного агрегата, так как он определяет только его термическое совершенство, не учитывая расход энергии на его собственные нужды (привод мельницы, вентиляторов, дымососов и пр.). Более полно экономичность котельного агрегата определяется го к- п. д. нетто (тг]" " "")  [c.129]

Коэффициент полезного действия мазутных котлов приближается к последней цифре. Большинство крупных энергетических котлов, работающих на сернистых мазутах восточных месторождений, оборудовано установками для предварительного подогрева воздуха отработавшим паром турбин с целью защиты воздухоподогревателей от коррозии. Поступление в котельный агрегат воздуха, подогретого паром, приводит к повышению температуры уходящих газов. Однако увеличение потерь с уходящими газами котлов в данном случае компенсируется увеличением выработки электроэнергии на базе пара, используемого для подогрева воздуха или, другими словами, уменьшением потерь с охлаждающей водой в турбинных установках (подробнее в гл. 7).  [c.32]

В главе VI рассматриваются пути увеличения коэффициента полезного действия и других экономических показателей гидравлического привода путем применения следящих приводов дроссельного управления с насосами регулируемой производительности. Некоторое усложнение конструкции насоса за счет введения автоматического регулятора расхода компенсируется увеличением коэффициента полезного действия привода почти в 2 раза без заметного ухудшения его динамических характеристик.  [c.6]

При значительных мощностях привода особое значение получает экономия мощности и уменьшение ее потерь, поэтому целесообразнее применять автоматические бесступенчато-регулируемые насосы и гидродвигатели. Коэффициент полезного действия и производительность регулируемых гидронасосов существенно зависят для данного сорта масла (рабочей жидкости) от давления (нагрузки), от утечек и сжатия масла в насосе и гидросистеме. Влияние утечек и объемных деформаций на эффективную производительность и объемный к. п. д. насоса возрастает с увеличением давления, увеличением температуры масла и уменьшением производительности насоса. На увеличение утечки в системах влияет износ насоса и гидравлических механизмов.  [c.261]

Коэффициенты полезного действия гидравлического привода с дроссельным управлением. Работа дроссельного привода сопровождается гидравлическими, объемными и механическими потерями мощности в насосе, золотнике, гидродвигателе, гидравлических магистралях и в приводящем двигателе насоса. Наибольшие потери мощности наблюдаются в системе насос — золотник. Вначале рассмотрим потери мощности и к. п. д. золотника.  [c.367]

Коэффициенты полезного действия. В дроссельном гидравлическом приводе с насосом регулируемой производительности потери мощности в золотнике значительно меньше, а к. п. д. больше, чем в аналогичном приводе с насосом постоянной производительности. Гидравлический к. п. д., учитывающий потери давления в дросселирующих окнах, для стационарных процессов выражается формулой  [c.391]

Износ отдельных элементов гидравлических турбин, осевых и центробежных насосов вследствие кавитации и истирания взвешенными наносами приводит к ухудшению режимов работы машин, снижению их коэффициента полезного действия и, в конечном итоге, к потерям энергии.  [c.3]

На начальных стадиях индустриализации низкий уровень техники преобразования тепловой энергии в механическую при одновременном резком увеличении потребления механической энергии приводил, как правило, к общему снижению суммарных национальных коэффициентов полезного использования (к. п. и.) топливно-энергетических ресурсов. Это снижение значений к. п. и. благодаря  [c.13]

Механический к. п. д. гидравлических машин, а следовательно, и привода в целом во многом определяет такие эксплуатационные показатели гидрообъемных передач, как общий коэффициент полезного действия, минимальное устойчивое число оборо- 2, тов, диапазон регулирования по оборотам, а также надежность работы и срок службы.  [c.255]

Энергетические данные следящего привода могут быть оценены его коэффициентом полезного действия т].  [c.45]

Совершенство ТЭС определяе-ся ее коэффициентом полезного действия. КПД станции без учета расходов энергии на собственные нужды, нагример привод электродвигателей вспомогательных агрегатов, называется КПД орутто и имеет вид  [c.185]

В агрегатированных конструкциях мотор-редуктора привод осуществляется от фланцевого электродвигателя через червячный (б) или планетарный (в) редуктор. Угловая передача устранена. Габариты установки резко сокращаются. Усилия привода погашаются в корпусе редуктора, который нагружен только окружным усилием на приводной звездочке. Введение централизованной жидкой смазки увеличивает долговечность передав. В целом получается громный выигрьпц в габаритах и массе установки, простоте изготовления, удобстве монтажа и обслуживания, коэффициенте полезного действия, затрате энергии, надежности II долговечности.  [c.552]

В настоящее время на северных магистральных газопроводах многие КС оборудованы ГПА с газотурбинным приводом типа ГТК-10-4. В тепловой схеме этих ГТУ используют регенератор для подогрева циклового воздуха, который на входе в камеру сгорания имеет температуру 643— 673 К. Жаровые трубы камер сгорания относительно часто выходят из строя, кроме этого, часты случаи разгерметизации воздухоподогревателя и, как следствие, ускоренное загрязнение проточной части осевого компрессора, что снижает его коэффициент полезного действия. Сегодня есть опыт эксплуатации данного типа ГТУ без использования воздухоподогревателей. В отличие от регенеративных турбоагрегатов у машин безрегене-раторного типа цикловой воздух непосредственно после осевого компрессора с температурой 433—473 К поступает, в камеру сгорания без дополнительного подогрева выхлопными газами. При отсутствии в схеме регенераторов уменьшается сопротивление по воздушному и выхлопному трактам. При этих условиях имеется выигрыш в мощности, но происходит некоторое снижение к.п.д. ГТУ.  [c.19]


Выбираются окончательные вариант.ы модернизации. Приемлемость выбранных вариантов оценниастся с точки зрения обеспечения достаточно высокого коэффициента полезного действия (см. Проверка потерь на трение в приводах станков стр. 714).  [c.668]

Отсюда видно к каким грубым ошибкам ведет кинетостатиче-ский анализ механизмов, проводимый на их плоских кинематических схемах. Эти ошибки будут сказываться в равной мере и при определении потерь на трение, а следовательно, на мощность привода механизма и его коэффициент полезного действия. Рассмотрим теперь вал кривошипа D длиной Д см расположен на двух подшипниках Л и S на расстоянии а см один от другого. На концах вала (фиг. 131) закреплены кривошип и зубчатое колесо. Шатун механизма FN соединяет палец кривошипа F с пальЦем ползуна N так, что точка N оказывается расположенной эксцентрично по отношению к оси ползуна.  [c.267]

Из предыдущего параграфа следует, что метод коэффициентов полезного действия учитывает потери, обусловленные лишь внутренней необратимостью цикла, но никак не учитывает потерь, обусловленных конечной разностью температур источника тепла и рабочего тела. Тем не менее метод коэффициентов полезного действия широко распространен в практике теплотехнических расчетов. Объясняется это тем, что внешняя необратимость не влияет на количественные результаты анализа — если внутренняя необратимость цикла приводит к тому, что часть тепла, сообш енного рабочему телу, уходит из цикла в виде теплопотерь, то внешняя необратимость не приводит к потерям тепла одно и то же количество тепла будет передано от горячего источника к рабочему телу вне зависимости от того, какова разность температур между ними. Внешняя необратимость приводит к потере работоспособности (т. е. недоиспользованию температурного потенциала тепла, который в случае термодинамически более совершенной организации процесса подвода тепла позволил бы получить большую работу).  [c.310]

Потребность применения следящих приводов в высоконагру-женных машинах и оборудовании (мощностью свыше 5—10 кет) определила создание гидравлических следящих приводов объемного управления, в которых регулирование расходов рабочей жидкости, поступающей в силовые двигатели, осуществляется изменением производительности насоса. Эти приводы находят все более широкое распространение благодаря таким положительным свойствам, как повышенные жесткость и коэффициент полезного действия, уменьшенный нагрев рабочей жидкости, а также успехам промышленности в освоении серийного выпуска регулируемых насосов и гидромоторов. Принципы построения применяемых в машинах в станках одно- и двухкоординатных гидравлических и электрогидравлических следящих приводов  [c.6]

Все это приводит, с одной стороны, к улучшению расныливания и повышению его надежности и, значит, к уменьшению потери от химической неполноты горения, с другой стороны, облегчает освобождение поверхностей нагрева от части отложений и улучшает передачу тепла. В результате возрастает коэффициент полезного действия установки.  [c.138]


Смотреть страницы где упоминается термин Коэффициент полезного привода : [c.16]    [c.115]    [c.6]    [c.10]    [c.215]    [c.54]    [c.360]    [c.112]   
Проектирование механических передач Издание 4 (1976) -- [ c.6 ]



ПОИСК



ATM полезности

Коэффициент полезного действия привода

Коэффициент полезного действия привода станка

Коэффициенты полезного действия и затрата мощности на привод компрессора

Коэффициенты полезного действия и затрата мощности на привод компрессора. Пример конструкции компрессора

Мощность привода. Коэффициент полезного действия

Прессы винтовые с дугостаторным приводом 116 — Коэффициент полезного действия удара

Прессы винтовые с дугостаторным приводом 116 — Коэффициент полезного действия удара ползуна

Прессы винтовые с дугостаторным приводом 116 — Коэффициент полезного действия удара прессы

Прессы винтовые с дугостаторным приводом 116 — Коэффициент полезного действия удара разгона

Ц икл коэффициент полезного



© 2025 Mash-xxl.info Реклама на сайте