Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Никель Содержание в стали и влияние

Одним из существенных факторов, влияющих на жидкотекучесть стали, является температура металла. Температура ликвидуса сплавов с различным содержанием хрома и никеля приведена в работе [164]. Влияние других элементов на температуру плавления стали приведено в табл. 27.  [c.226]

Работами последнего времени [313, 314] установлено, что наибольшее количество горячих трещин при сварке образуется при содержании ниобия менее 1 %. С повышением содержания ниобия в наплавленном шве склонность к растрескиванию уменьшается, а при содержании его 1,6% горячие трещины совершенно исчезают. Вредное влияние ниобия в отношении растрескивания при сварке усиливается с повышением содержания никеля, углерода, серы, кислорода и азота в стали и кислотности флюса при сварке.  [c.351]


Влияние никеля на эрозионную стойкость аустенитных сталей (рис. 100, б) связано с устойчивостью аустенита. С увеличением содержания в стали никеля аустенит становится более стабильным, в результате чего сопротивляемость микроударному разрушению снижается. Стабильный аустенит имеет небольшой период накапливания деформаций и разрушается сравнительно быстро. Нестабильный аустенит, имеющий продолжительный период накапливания деформаций, разрушается медленно. Тотальное разрушение нестабильного хромоникелевого аустенита начинается приблизительно через б ч, стабильного — через 3—4 ч.  [c.160]

Никель повышает крепость стали и ее относительную вязкость. Он не образует устойчивых карбидов и находится в сталях в виде твердого раствора с железом. Никель задерживает рост зерен стали при нагревании и способствует образованию мелкокристаллической структуры. Сопротивление ржавлению и действию кислот растет с увеличением содержания никеля. На свариваемость стали никель не оказывает заметного влияния.  [c.282]

Межкристаллитная коррозия, связанная с выделением карбидов хрома по границам зерен, зависит от большого количества факторов. К ним, прежде всего, относится содержание в стали углерода, затем содержание хрома, никеля, азота или марганца и стабилизирующих элементов, короче говоря — химический состав стали. Наряду с уже ранее упомянутой термообработкой для отдельных типов сталей имеет значение и величина зерна, деформация в холодном состоянии (наклеп) и т. д. Большое количество факторов и совместное их влияние вызывают существенные затруднения при решении отдельных вопросов. Часто приходится проводить большое количество экспериментов, и только статистическая обработка полученных данных дает возможность надежно определить влияние некоторых факторов.  [c.81]

Значения температур Мд и сильно зависят от содержания в стали никеля (рис. 10.3). Большое влияние на понижение температуры мартенситного превращения оказывают и другие легирующие элементы — углерод, азот, марганец и кремний. У высоколегированных хромоникелевых сталей температура мартенситного превращения лежит в области от О до 100 °С и даже ниже в зависимости от состава стали. Таким образом, переохлажденный до 20 °С аустенит может быть при определенном составе стали стабильным и нестабильным и претерпевать при определенных условиях мартенситное превращение, например в условиях охлаждения до пониженных температур (температур мартенситного превращения) при закалке или холодной пластической деформации при положительной температуре.  [c.256]


Феррит в рассматриваемых сталях оказывает определенное влияние на свойства. Отличаясь более низкой по сравнению с аустенитом пластичностью, он осложняет процесы обработки давлением, способствуя появлению надрывов. В прокатанном металле феррит раскатывается в слои-строчки, обусловливающие анизотропию свойств вдоль и поперек направления проката металла. По сравнению с аустенитом феррит более хрупкая составляющая, поэтому он ухудшает вязкость стали. Он отрицательно влияет на жаропрочность. В связи с отрицательным влиянием феррита на технологические и другие свойства аустенитных сталей его количество регламентируется. Обычно для сохранения удовлетворительной деформируемости допускают его содержание до 25 %. Регулируют количество феррита в основном соотношением содержания в сталях хрома и никеля. Так, стали, содержащие 18 % Сг и 8 % N1, могут иметь в составе структуры от О до 30 % феррита. Стали, содержащие 25 % Сг и 20 % N1, имеют полностью аустенитную структуру.  [c.257]

Малые добавки- в низколегированных сталях не оказывают заметного влияния на скорость общей коррозии в воде и почве, однако состав стали играет большую роль в работе гальванических пар, определяющих коррозионную стойкость при гальванических контактах. Например, в большинстве природных сред стали с малым содержанием никеля и хрома являются катодами по отношению к углеродистой стали вследствие повышения анодной поляризации. Причина этого объяснена на рис. 6.15. И углеродистая, и низколегированная сталь, взятые в отдельности, корродируют с приблизительно одинаковой скоростью / ор, ограниченной скоростью восстановления кислорода. При контакте изначально различные потенциалы обеих сталей приобретают одно и то же значение гальв-  [c.127]

Закономерное влияние хрома и никеля на свойства пассивных сплавов проявляется и в зависимости скорости растворения в пассивной области от состава сплавов. С ростом содержания хрома в сплаве Ре—Сг величина этой скорости в серной кислоте снижается (рис. 11) I 51,52, 86], особенно резко при переходе к сплавам с 13% хрома. Введение и последующее увеличение содержания никеля сопровождается уменьшением скорости растворения хромистой стали в пассивном состоянии [50,54,56,86]. Скорость растворения пассивных сплавов никель-хром в серной кислоте снижается с ростом содержания хрома в сплаве до 15 ат.% и практически не изменяется при дальнейшем повышении концентрации хрома (рис. 12) [ 57]. За-  [c.26]

Из табл. 17.2 видно, что с введением в хромоникелевые стали небольших добавок ниобия и титана существенно повышается скорость переноса масс этих сталей. В этом же направлении, но в меньшей степени влияет добавка алюминия. По результатам опытов были получены эмпирические уравнения, приближенно описывающие влияние различных легирующих компонентов на скорость переноса масс. Коррозионная стойкость сталей снижается при увеличении содержания никеля, при введении ниобия и титана благоприятное влияние оказывают добавки молибдена, кремния, алюминия.  [c.262]

Существенное влияние легирование оказывает на положение критической температуры хрупкости (хладноломкости). Например, кремний и кислород повышают критическую температуру хрупкости, а хром, марганец, алюминий и медь при их содержании в несколько процентов ее понижают. Особенно сильно снижает температуру хладноломкости никель. Склонность феррита к хрупкому разрушению в основном определяет это свойство и у стали.  [c.16]

Глубина борирования с увеличением содержания углерода и легирующих элементов в стали снижается, причем наиболее сильно при введении молибдена и вольфрама. Никель, марганец и кобальт мало влияют на глубину слоя. На микротвердость борированного слоя легирующие элементы действуют следующим образом никель ее снижает, а хром, молибден, вольфрам и марганец повышают. Влияние плотности тока и температуры при электролизном борировании на глубину слоя для различных марок стали показано на рис. 74.  [c.128]

Необходимо отметить существенное влияние титана на обрабатываемость сталей и сплавов даже небольшие присадки его (- 0,35%) к хромистой стали значительно повышают ее вязкость, в результате чего усиливается склонность стружки к свариванию с резцом. При наличии титана в количестве, превышающем пятикратное содержание углерода, образуется интерметаллидное соединение титана с никелем, способствующее упрочнению сплава и тем самым ухудшению обрабатываемости.  [c.328]


Увеличение содержания хрома и алюминия в стали приводит к повышению стойкости металла против ванадиевой коррозии. Если никель в аустенитных сталях оказывает положительное влияние на коррозионную стойкость в воздухе, паре и продуктах сгорания многих топлив, то при ванадиевой коррозии в продуктах сгорания мазута никель вреден. Явно отрицательное влияние на коррозионную стойкость в продуктах сгорания мазута оказывает молибден.  [c.53]

Установлено, что введение хрома в сплавы железа повышает стойкость против окисления. Причем тем больше, чем выше в них содержание хрома. По-видимому, на поверхности таких сплавов образуется плотная окисная пленка из окислов хрома или смеси окислов хрома и окислов железа, содержащая большее количество хрома, чем среднее его содержание в стали. Аналогичное влияние на окалиностойкость оказывают алюминий и крем1ний, которые часто используют в качестве добавок к хромистым и хромоникелевым сталям. Одновременное введение никеля и хрома существенно повышает окалиностойкость сплавов (см. рис. 7, 27 и 46).  [c.1415]

Применение никеля при легировании стали увеличивает ее вязкость и понижает критическую температуру хладноломкости [53, 55]. Высокая хладостойкость малоуглеродистых никелевых сталей позволяет широко использовать их в условиях низких температур. Известно [56], что в стали с 8— 9%-ным содернсанием никеля даже при температуре испытания— 196°С излом ударных образцов остается (на 70— 80%) волокнистым. Однако влияние никеля на механические свойства стали неоднозначно избыточное легирование стали никелем может снизить запас вязкости [55]. Смягчающее действие никеля зависит от содержания в стали углерода, марганца, бора, кремния и вольфрама [51]. В ферритных и малоуглеродистых сталях никель повышает запас вязкости тем сильнее, чем больше его содержание и чем меньше в стали углерода. С повышением количества углерода и общей легированности стали благоприятное влияние никеля умень-  [c.40]

Присутствие марганца в количестве 1,1—1,5% в стали с 0,15% С сопровождается повышением предела текучести с 31 до 39 кГ1мм . Степень упрочнения от легирования кремнием практически такая же 1 % Si повышает предел текучести на 7,9 кГ/мм . Раздельное легирование стали хромом, никелем и медью оказывает небольшое влияние на предел текучести —2% Ni повышают его с 28 до 34 кГ1ммР- а 1% Си — на 4 кГ1мм . Упрочняющее влияние хрома усиливается с повышением содержания углерода или в случае комплексного легирования. Явление дисперсионного твердения, связанного с изменением растворимости меди в феррите, вызывает повышение прочностных и снижение пластических и вязких свойств. Эффект дисперсионного твердения обычно возрастает с уменьшением содержания в стали углерода и несколько снижается в случае присутствия элементов (марганец, никель, кремний), образующих растворы с медью. Легирование медьсодержащих сталей вторым элементом обязательно, так как медь в количестве 0,3% вызывает явление красноломкости такое влияние меди нейтрализуется введением никеля в соотношении 1 2.  [c.23]

В структуре таких сталей, изготовляемых по ГОСТ или ТУ, содержание ферритной фазы может изменяться в широких пределах (на десятки процентов). Между тем при отсутствии феррита в сталях и сварных швах они становятся склонными к образованию горячих трещин, а при содержании феррита свыше 3—5 % у них появляется охрупчивание при длительной выдержке в диапазоне температур 350—500 °С, снижение коррозионной стойкости и ухудшение технологичности в процессе прокатки и волочения. Оценку влияния состава стали на содержание в ней ферритной фазы проводят обычно по структурным диаграммам Шефлера или Делонга, при использовании которых содержание 6-феррита в металле или глубина его аустенитности находятся по приведенным (эквивалентным) содержаниям хрома и никеля. Влияние каждого элемента на структуру определяется его концентрацией и постоянным коэффициентом, отражающим ферритизирующее (Хф) или аустенитизирующее (Ка) влияние по сравнению с влиянием хрома или никеля соответственно. Значения таких коэффициентов определяют путем изучения многих плавок стали с различным содержанием исследуемого элемента. Некоторые исследователи предлагают для одних и тех же элементов сильно отличающиеся друг от друга значения коэффициентов интенсивности их влияния на структуру стали. Так, например, для молибдена предлагались значения 1 1,5 и 3, а для азота —12 22 и 30.  [c.60]

Много усилий было затрачено на поиски идеального сплава, способного противостоять коррозии под действием топливной золы, но в настоящее время такого сплава все еще нет. Стали, содержащие значительные добавки молибдена, как правило, быстро корродируют [772, 895, 899, 907]. По-видимому, повышенное содержание в сталях молибдена, вольфрама и ванадия всегда оказывает вредное действие [902]. Сравнительно хорошей стойкостью обладают сплавы никеля с хромом, нержавеющая сталь 18Х8Н и хромоалюминиевая сталь 37Х8А. Хотя пятиокись ванадия постепенно и разъедает защитную пленку окиси хрома СггОз, хромистые стали с содержанием до 40% Сг довольно хорошо выдерживают воздействие топливной золы [908], а особенно благоприятны в этом отношении добавки кремния [907]. Фитцер и Шваб [907] выявили влияние присадки кремния и хрома к железу путем периодического погружения образцов в расплав пятиокиси ванадия при 925° С. Результаты их исследования иллюстрируются на рис. И 5.  [c.393]

Из примесей, обычно содержащихся в сталях и сплавах, наиболее отрицательное влияние на пластичность при высоких температурах оказывают свинец и сера. Так, присутствие в хромоникелевых и хромоникельмолибденовых аустенитных сталях больше 0,01—0,006% РЬ приводит к снижению пластичности при горячей обработке давлением и образованию рванин на поверхности металла. Еще более резкое влияние сви1ща проявляется при горячей пластической деформации сталей с более высоким содержанием никеля. Чем выше содержание никеля и чем крупнее слитки, тем при меньшем количестве свинца проявляется пониженная пластичность [163].  [c.143]


С. И. Баранчуком. Ими было установлено, что в сталях с содержанием 0,9—1,0% С большинство легирующих элементов (фиг. 178, а) снижает температуру начала мартенситного превращения Мн- Наибольшее влияние в этом направлении оказывают марганец, хром и никель, затем ванадий и молибден. Медь влияет меньше, кремний совсем не влияет, а алюминий и кобальт, наоборот, повышают мартенситную точку. Влияние легирующих элементов на снижение мартенситной точки зависит от содержания в стали углерода. Чем больше углерода, тем интенсивнее снижает хром точку Мн-  [c.284]

Кроме описанных, для производства эмалированных изделий могут применяться и другие низколегированные стали. Предлагалось легировать сталь медью (от 1,15 до 0,5%), никелем или кобальтом. Наиболее эффективной добавкой к стали должен быть кобальт, больше всех указанных легирующих элементов снижающий скорость окисления малоуглеродистой стали [111]. Хотя кобальт, как и никель, несколько увеличивает прочность малоуглеродистой стали [153], однако их положительное влияние на измельченность зерен феррита дает основание полагать, что обе добавки не будут ухудшать способность стали к глубокой вытяжке. Этого нельзя, однако, сказать о меди, которая, как известно [138, 162—164], при содержании в стали свыше  [c.111]

Для приближенного определения характера структуры обычно пользуются диаграммой Шеффлера, предварительно подсчитав эквивалеитпые содержания никеля и хрома. На структуру этих сталей оказывает влияние также термообработка, пластическая деформация н другие факторы. По )тому положение фазовых областей на диаграммах состояния определено для немногих систем в виде псевдобинарн1,[х разрезов тройных систем, обычно Fe—Сг—Ni с углеродом.  [c.281]

В зависимости от характера коррозионной среды и природы металла для каждого случая существует критическое напряжение, ниже которого склонность металла к коррозионому растрескиванию проявляется слабо. Для стали <Ткр = = 75—80 % (Тт. Время до разрушения зависит от уровня напряжений оно быстро уменьшается при росте напряжений. Увеличение содержания никеля в сталях оказывает благоприятное влияние на стойкость к коррозионному растрескиванию, и при содержании никеля около 45% они становятся не чувствительными к коррозионному растрескиванию (рис. 13).  [c.15]

Содержание хрома, никеля и углерода изменяется в широких пределах, соответственно, % О—60 О—60 0,03—4,0%. Особое влияние на травимость оказывает содержание углерода. Чем выше его концентрация, тем легче происходит травление. При выборе реактива для выявления структуры Вилелла [4] рекомендует подразделять стали и сплавы на три группы в зависимости от содержания углерода >0,5% С (группа I) <0,5% С (группа II) аустенитные стали или сплавы с пониженным содержанием углерода (группа III).  [c.113]

Благоприятное влияние никеля и марганца на хладостой-кость стали объясняется тем, что эти элементы в оптимальном количестве (около 1%) увеличивают подвижность дислокаций никель — уменьшая энергию взаимодействия дислокации с атомами внедрения, марганец — задерживая азот и снижая его содержание в атмосферах Коттрелла. Повышение в составе стали марганца, никеля приводит к понижению как работы зарождения йэ, так и работы распространения Др трещины вследствие образования промежуточных игольчатых структур при охлаждении аустенита.  [c.41]

Трубы с наплавленными поверхностями кромок подвергаются термообработке (обычно отпуску) с целью восстановления свойств зоны термического влияния перлитной стали и смягчения переходных структур зоны сплавления перлита с аустенитом. При сварке аустенитными электродами с повышенным содержанием никеля, шов, как правило, имеет полностью аустенитную структуру с круп-нодендритиым строением. В результате этого металл шва в процессе кристаллизации, в большей мере чем металл шва с аустенитно-ферритной или аустенитно-карбидной структурой, склонен к образованию горячих трещин и надрывов [1].  [c.409]

Совместное воздействие газовой среды, состоящей из оксидов серы, воздуха и водяного пара, вызывает более интенсивную коррозию металлов, чем каждого из указанных газов в отдельности. Увеличение содержания серы в топливе, дающем газообразные продукты сгорания (например, легкое дистиллятное топливо), приводит к увеличению скорости коррозии сталей, но далеко не во всех случаях. Влияние содержания серы в топливе возрастает при повышении температуры и повышении концентрации никеля в сплаве. О роли указанного фактора можно судить по данным о коррозии аустенитных сталей 08X18HI0T и Х23Н18 в продуктах сгорания дистиллятных топлив с различным содержанием серы. Опыты продолжительностью 100 ч при 800 °С показали, что удельная потеря массы указанных сталей при содержании в топливе 0,31 0,41 и 0,96 % серы равняется соответственно 0,79 0,87 и 1,04 мг/см и 0,49 0,61 и 0,70 мг/см [1]. Увеличение скорости коррозии сталей в продуктах сгорания топлива с повышенным содержанием оксидов серы вызвано образованием сульфидов металлов (FeS, NigSa и др.) на их поверхности. Присутствие же сульфидов в поверхностной пленке продуктов коррозии приводит к увеличению скорости диффузионных процессов, происходящих в ней.  [c.221]

К другим элементам, обычно входящим в состав аустенитных нержавеющих сталей, относятся Мп (1—2 %), С (0,03—0,25%), N (0,02—0,30%) и 51 (1—3%), Р (часто присутствует как загрязняющая примесь). Влияние марганца на стойкость аустенитных сталей против КР может быть различным. Наименее сомнительные эксперименты [66] не показали никакого эффекта. [81], но за пределами обычного диапазона 1—2% наблюдались случаи как положительного, так и отрицательного влияния марганца [66, 68, 69, 82]. Есть данные о том, что при испытаниях во влажных условиях концентрации марганца >3% снижают стойкость против КР [83]. Эксперименты в газообразном водороде при еще более высоком содержании марганца в стали показали явный отрицательный эффект [39, 84]. Добавки марганца, часто предназначенные для замещения никеля, вводятся с целью повышения растворимости азота и, следовательно, потенциальной упрочняемости сплава. Поэтому наблюдаемые эффекты могут быть отчасти связаны с усилением планарности скольжения, вызываемым азотом, как будет показано ниже. Кроме того, марганец повышает ЭДУ в меньшей степени, чем никель. Очевидно, необходимы дополнительные исследования влияния марганца на стойкость аустенитных сталей против как КР, так и водородного охрупчивания.  [c.70]

Определение намагниченности насыщения исследованных сталей показало, что этот благоприятный эффект сохраняется и при рекомендованных изменениях состава. Указанное количество аустенита в стали 7ХГ2ВМ определяется преимущественно марганцем при принятом снижении содержания марганца его влияние на аустенит возмещается никелем. "  [c.69]

Максимально допустимое содержание углерода является функцией влияния легирующих элементов на его термодинамическую активность. С повышением содержания в аустенитной стали никеля, кремния, кобальта, термодинамичетая активность углерода возрастает и вероятность выпадения карбидной фазы увеличивается. Влияние мар ганца и хрома противоположно (82].  [c.125]

Исследованием влияния легирующих элементов на свойства коррозионностойкой мартенситной стали, содержащей 0,02% С, 12% Сг было установлено, что увеличение содержания никеля от 4,1 до 10,5% и молибдена от О да 1 2% приводит к повышению вязкости мартенсита при низких температурах [70]. В стали с 4,1% никеля излом при — 196° С хрупкий с увеличением содержания йикеля резко увеличивается доля вязкой составляющей в изломе. Специфическое влияйие никеля на повышение пластичности [а-мартенсита связывают с понижением концентрации атомов — примесей внедрения на дисклокациях, что облегчает пЬдвижность их при деформации [125].  [c.138]


Из работы А. И. Захарова и О. П. Максимовой [1,42] видно, что нейтронное облучение увеличивает интенсивность мартенситного превращения в сталях с высоким содержанием никеля и марганца. В связи с этим следует полагать, что в аустенитной нержавеющей стали типа 1Х18Н9Т под влиянием облучения содержание феррита должно возрастать. Увеличение содержания феррита в стали после облучения зафиксировано Д. Лоу [1,43]. К аналогичному вы-  [c.42]

Как уже указывалось выше, явление коррозионного растрес- кивания аустенитных нержавеющих сталей в растворах хлоридов рассматривается двояко во-первых, с точки зрения воздействия ионов хлора и напряжений на защитные свойства пассивной пленки, образующейся на поверхности металла, и во-вторых, с точки зрения распада аустенита под воздействием напряжений и активного растворения образующейся при этом а-фазы в растворах, содержащих ионы хлора. Оставаясь в рамках первого направления, трудно объяснить интенсификацию процесса коррозионного растрескивания при наличии в растворе кислорода. Ведь с точки зрения пленочной теории пассивности присутствие кислорода в растворе должно способствовать пассивации металла и увеличению защитных свойств, пленки. С этих же позиций непонятно отсутствие влияния механических напряжений и хлоридов на скорость катодного процесса ионизации кислорода. Если ионы хлора и напряжение в металле способствуют разрушению пассивной пленки, то оба эти фактора должны изменять скорость и анодного, и катодного процессов. Ниже будет показано, что напряжения не влияют на скорость катодного процесса в растворах хлоридов и других анионов. Об отсутствии влияния напряжения на скорость катодного процесса на сталях 18-8 и 18-10 в кипящем растворе насыщенного хлористого магния указывали Т. П. Хор и Ж- Г. Хайнес [111,133]. Сточки зрения пленочной теории, увеличение стойкости сталей к коррозионному растрескиванию-трудно увязать с ростом содержания никеля в них и практически невозможно объяснить, почему аустенитная нержавеющая сталь . практически одинаковая по составу (особенно по хрому и никелю), но в силу тех или иных причин становится магнитной, является значительно более стойкой к коррозионному растрескиванию, нежели та же сталь, не обладающая магнитными свойствами [111,12  [c.159]

Выше уже говорилось, что при определенном содержании феррита в аустенитных сталях они становятся более стойкими к коррозионному растрескиванию. Х.Х. Улиг [111,134] отмечает, что аустенитные нержавеющие стали, близкие по своему химическому составу, существенным образом отличаются друг от друга по стойкости к коррозионному растрескиванию вследствие различия в структуре. Так, слабо магнитные и магнитные стали 18-8 не разрушались в процессе 200-часовых испытаний, в то время как немагнитные образцы разрушились за несколько часов. Именно с этой точки зрения следует рассмотреть влияние легирования кремнием на стойкость сталей к коррозионному растрескиванию. Е. Е. Денхард [111,101] указывает, что стойкость к коррозионному растрескиванию у стали 18-12, легированной 4% кремния, улучшается. Сталь 18-8, легированная 2% кремния, немагнитна и разрушается за 15 час. Та же сталь, легированная 1,1—2,7% кремния, слабо магнитна, т. е., очевидно, содержит а-фазу в количестве 5—10%, и не разрушалась по прошествии 250 час испытаний [111,134]. Высокая стойкость к коррозионному растрескиванию стали 18-8С небольшой концентрацией С (менее 0,002—0,004%) и азота (менее0,002—0,004%) [111,134] объясняется тем, что уменьшение содержания этих аустенитообразующих элементов делает сталь двухфазной — с содержанием а-фазы до 10—15% [И 1,123]. С другой стороны, сталь 19-20 с концентрацией менее 0,01% азота и углерода полностью аустенитна и достаточно стойка против коррозионного растрескивания. Та же сталь, но с концентрацией 0,2% углерода, тоже стойка к растрескиванию, но увеличение азота до 0,05% приводит к появлению трещин. Полагают, что в данном случае концентраторами напряжений были нитриды [111,142]. Сталь 18-8, закаленная при температуре 196° С, двухфазна и стойка к растрескиванию, в то время как без этой обработки она разрушалась за 6 час. Увеличение хрома в стали с 8 до 25% при концентрации 20% никеля делает сталь значительно более склонной к коррозионному растрескиванию вследствие уменьшения стабильности аустенита [111,134]. Учитывая изложенное выше, влияние легирующих элементов на коррозионное растрескивание нержавеющей стали  [c.165]

Марганец в количестве до 0,8 % остается в стали после раскисления и уменьшения вредного влияния серы (технологическая примесь), при большем содержании — легирующий элемент способствует стабилизации аустенитной структуры, увеличивает прочность и нрокали-ваемость стали снижение пластичности наблюдается при содержании марганца более 1,5 %. В высоколегированных жаропрочных сталях марганец применяют для частичной замены дефицитного никеля.  [c.277]


Смотреть страницы где упоминается термин Никель Содержание в стали и влияние : [c.31]    [c.59]    [c.129]    [c.83]    [c.156]    [c.232]    [c.351]    [c.22]    [c.28]    [c.19]    [c.86]    [c.66]    [c.174]    [c.182]    [c.20]   
Справочник сварщика (1975) -- [ c.0 ]



ПОИСК



Влияние никеля

Никель

Стали никеля



© 2025 Mash-xxl.info Реклама на сайте