Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Резьбовые соединения нагрузки

При Ов. б Ов.г наступает предельное пластическое состояние витков шпильки (болта) и значение UJa уменьшается в большей степени. Предельное состояние ограничивает несущую способность резьбовых соединений. Нагрузки, разрушающие резьбу, при наступлении предельного пластического состояния существенно ниже (особенно для корпусных деталей из материалов с низкой прочностью) сил, разрушающих стержень шпильки (рис. 5.14).  [c.155]


Для ответственных резьбовых соединений нагрузку сле-  [c.48]

Для предохранения резьбового соединения (см. рис. 432, а, 433, 436) от самопроизвольного развинчивания при переменной нагрузке и вибрациях применяют шайбы пружинные по ГОСТ 6402-70 (СТ СЭВ 2665-80) (рис. 344, а), стопорные с лапкой  [c.213]

Допускаемые напряжения и запасы прочности для резьбовых соединений приведены в табл. 1.2 и 1.3. Они учитывают точность расчетных формул, характер нагрузки, качество монтажа соединения (контролируемая или неконтролируемая затяжка) и пр.  [c.45]

В общем виде условия прочности резьбы на срез и смятие можно выразить следующими уравнениями Р осевая нагрузка, действующая на резьбовое соединение ср и — соответственно площадь среза и смятия резьбы.  [c.404]

Указания по расчету некоторых типовых резьбовых соединений. Болты с эксцентричным приложением нагрузки. На рис. 266, а показано крепление крышки резервуара болтами с эксцентричной головкой. Такие болты работают на растяжение от силы Р и на  [c.407]

Спецификой вероятностных расчетов резьбовых соединений в плане курса деталей машин является установление коэффициентов вариации основных параметров напряжений начальной затяжки, напряжений от суммарной нагрузки, пределов выносливости и коэффициента концентрации напряжений. За средние значения этих параметров в первом приближении можно принимать приведенные выше в этой главе значения.  [c.119]

СТ СЭВ 180—75), который предусматривает срезы вершин резьбы, равные ///4 у гайки и Я/8 у болта. Резьбовые соединения с таким профилем отличаются повышенной прочностью по сравнению с резьбой, имеюш,ей меньшие срезы облегчается образование наружной резьбы накатыванием и внутренней резьбы нарезанием. Метрическая резьба при статических нагрузках имеет запас самоторможения.  [c.276]

Влияние отклонения шага и половины угла профиля резьбы. При прогрессивной ошибке шага, достигающей 0,0Й мм, и при отклонении половины угла профиля до 2,5° сопротивление срезу резьбы снижается до 20 %. Это объясняется уменьшением сечения витков резьбы, вызываемым значительными зазорами по среднему диаметру (зазоры необходимы для диаметральной компенсации отклонений шага и половины угла профиля при свинчивании). Обычно на практике отклонения шага в пределах 0,01 мм и половины угла профиля в пределах 1 на статическую прочность резьбовых соединений влияют незначительно. Как положительные, так и отрицательные отклонения шага увеличивают неравномерность деформации болта и гайки, а следовательно, и неравномерность распределения нагрузки по виткам резьбы, что понижает циклическую долговечность резьбовых соединений.  [c.292]


Для крепежных резьб у= 1,5.. . 4°, а ф =6,, . 11° при / 0,1.. . . . . 0,2. Таким образом, все крепежные резьбы самотормозящие. Это объясняет важное преимущество крепежной резьбы — надежное стопорение гайки (винта) в любом положении. Однако это свойство проявляется главным образом при постоянных нагрузках. При переменных нагрузках оно, как правило, не соблюдается. Поэтому необходимо стопорение резьбовых соединений (см. 3.11).  [c.284]

В большинстве случаев резьбовые соединения являются предварительно затянутыми, т. е. до приложения рабочей нагрузки к соединению винт затягивается и подвергается растяжению усилием предварительной затяжки, при этом на винт действует крутящий момент, создаваемый с помощью ключа и равный моменту трения в резьбе винта.  [c.378]

Расчет резьбовых соединений, воспринимающих поперечную нагрузку. Условие надежности такого соединения — отсутствие сдвига деталей в стыке. Конструкция может быть двух вариантов, что и определяет расчет.  [c.290]

В рассматриваемом случае нарезанная часть вала и гайки работают в условиях напряженного резьбового соединения с затяжкой без внешней осевой нагрузки.  [c.191]

Резьбовые соединения. Резьбовые соединения осуществляются посредством винтов, болтов, гаек и других деталей с резьбой. Основными достоинствами их являются удобство и простота сборки и разборки, взаимозаменяемость, большая номенклатура стандартных резьбовых деталей и невысокая стоимость при массовом автоматизированном производстве деталей. Недостатком резьбовых соединений, работающих при переменных нагрузках, является значительная концентрация напряжений, вызываемая наличием резьбы.  [c.264]

Резьбовые соединения при постоянных нагрузках принадлежат к числу самотормозящихся, так как обычно /р > 0,06 и угол трения р > р. Поэтому для отвинчивания гайки требуется приложить момент  [c.508]

Виды повреждений. При статической нагрузке наиболее характерными являются дна типа разрушения резьбового соединения обрыв стержня винта и срез либо смятие витков резьбы. Чаще встречается первый тип разрушения, определяемый прочностью стержня винта.  [c.417]

Решение. 1. Для резьбового соединения с неконтролируемой затяжкой по табл. 3.4 при постоянной нагрузке принимаем [5т]=4,5 в предположении, что наружный диаметр резьбы болтов находится в интервале 6...16 мм. По табл. 3.3 От = 300 Н/мм .  [c.69]

Рассмотрим основные случаи расчета резьбовых соединений на прочность при постоянной нагрузке.  [c.231]

Резьбовые соединения бывают двух видов ненапряженные (усилие затяжки отсутствует) и напряженные (с наличием предварительной затяжки). Большинство резьбовых соединений относится к затянутым, т. е. таким, которым при монтаже конструкции сообщается первоначальная затяжка. Цели, преследуемые затяжкой, весьма разнообразны. Для ряда конструкций она должна обеспечить требуемую герметичность соединения, например при креплении крышки цилиндров двигателей внутреннего сгорания, паровых котлов, автоклавов и т. п. В других конструкциях затяжка дает возможность предотвратить разъединение узла при действии переменной нагрузки, например при постановке фундаментных шатунных болтов и шпилек.  [c.470]

Расчет затянутых болтов с учетом внешней нагрузки. Резьбовое соединение (рис, 28.10) затянуто силой Q3 и затем подвергается воздействию внешней силы Р. Внешняя нагрузка принимается заданной и приложенной симметрично оси болта. Состояние болтов и соединяемых деталей определяется по диаграмме рис. 28.11.  [c.475]

Проведенный анализ сопоставления результатов эксперимента и расчета показал, что скорость развития трещины удовлетворительно может быть описана выражением (2) как для образцов с концентратором, так и для резьбовых соединений при различных значениях коэффициента асимметрии нагрузки.  [c.390]

Использование резьбового соединения короткого образца с трубчатым динамометром увеличивает податливость перехода образец — динамометр и вследствие значительной величины диаметра динамометра приводит к появлению радиальных колебаний в нем при быстрых изменениях нагрузки (см. рис. 42, е).  [c.110]


Применение в транспортных машинах, двигателях внутреннего сгорания, в часах и приборах различного вида пружин, работающих с переменными нагрузками, требует тш,ательного их контроля под нагрузкой. Все приспособления, применяемые для проверки усилий затяжки резьбовых соединений и упругих свойств различных типов пружин можно подразделить на две группы динамометрические ключи и приспособления для контроля пружин.  [c.266]

Степень и равномерность затяжки винтовых соединений в значительной степени предопределяют правильность работы многих ответственных узлов. Неравномерная затяжка вызывает излишнее напряжение в деталях и узлах, приводит к деформациям, а неполная затяжка ведет к разбалтыванию резьбового соединения во время работы, что имеет особое значение в машинах, работающ,их с переменными нагрузками (с толчками).  [c.266]

Болты и шпильки сальников желательно делать из крепежных сталей типа ЗОХМА, ЗОХМ, у которых =95 кгс/мм, б о°2 70 кгс/мм, 6 = 11%. Запас прочности по пределу прочности следует брать не менее 2,6, Усталостная прочность резьбовых соединений повышается при уменьшении величины Е у гайки. Проверку болтов и шпилек сальников на малоцикловую нагрузку обычно не производят, потому что нагрузка плавно меняется от максимума до нуля и набивка сама служит демпфирующим элементом. Гайки рекомендуется делать из материала с меньшим значением б в. При этом происходит выравнивание нагрузки по виткам.  [c.98]

Резьбовые соединения деталей, подвергаемых переменным нагрузкам, также работают на усталость. Например, разрушение резьбовых соединений колонн пресса от усталости происходило при креплении колонны разрезной шайбой 1 (рис. 26) или в первых нитках резьбы болта 2 при креплении гайкой. Применение упругого болта (рис. 27, а) и упругой гайки (рис. 27, б) гарантировало от поломок.  [c.125]

Выше рассмотрено соединение типа стяжки, в котором обе детали работают в условиях растяжения (нагрузка подводится и снимается с разных сторон). На практике распространены конструкции, в которых нагрузка подводится и снимается с одной стороны. Здесь имеет место поворот силового потока и детали испытывают деформации разного знака (стандартные резьбовые соединения и т. п.).  [c.22]

Характер распределения нагрузки по длине шлицевого соединения такой же, как и в резьбовом соединении (см. также с. 47).  [c.68]

Резьбовые соединения осуществляют с помощью резьбовых деталей болтов, винтов и гаек. К достоинствам резьб и резьбовых соединений относят возможность создавать и передавать большие осевые нагрузки при малых движущих усилиях или моментах простоту преобразования вращательного движения в поступатель-ное возможность образования самотормозящих и несамотормозя-щих, легко собираемых и разбираемых, взаимозаменяемых, неподвижных и подвижных компактных соединений высокопроизводительную технологию изготовления резьбовых деталей.  [c.401]

Для резьбового соединения типа винт стяжка (или гайка, работающая на растяжение), в котором распрсде.пение нагрузки между нитками более раппо.мер-ное, чем в обычном соединении, уменьшают на 30—40 %.  [c.118]

Влияние отклонений диаметров резьбы. Циклическая долговечность резьбовых соединений зависит от концентрации напряжении, возникающих во впадинах резьбы болтов, и характера распределения нагрузки между витками (при равномерном распределении циклическая долговечность выше). При периодическом нагружении резьбовые соединения разрушаются по первой или второй нагруженным впадинам резьбы болта. Разрушению предшествует появление усталостной трещины. В возникновении усталостной треи ,ины большую роль играют касательные напряжения, зависящие от зазора по виутреинему диаметру резьбы. При достаточно большом зазоре (рис. 12.8, а) максимальные касательные напряжения определяют по формуле  [c.290]

В беззазорном резьбовом соединении с максимальной рабочей выс(Л ой профиля резьбы Hi (например, для болта с полем допуска 4h и гайки с полем допуска 4Н5Н) поверхности витков резьбы плотно соприкасаются между собой, образуя жесткое малоподатливое соединение, Распределение нагрузки по виткам резьбы в этом случае неравномерное, циклическая долговечность резьбовых соединеьшй низкая.  [c.291]

Теоретически можно определить необходимое уменьшение шага резьбы болта или увеличение шага резьбы гайки, при котором разность деформаций болта и гайки, находящихся под нагрузкой, не передается на витки их резьбы. В этом случае силы распределяются более равномерно. Для резьбовых соединений из углеродистых сталей это достигается при АР = 0,001Я, где АР — положительная разность шагов резьбы болта и гайки. Требуемая разность шагов 292  [c.292]

Расчет болтов зависит от характера нагружения и технологических особенностей сборки резьбовых соединений (затянутые незатянутье с зазором между болтом и отверстием соединяемых деталей и без зазора). По характеру нагружения болты подразделяют на статически или циклически нагружаемые, воспринимающие осевую или поперечную нагрузку.  [c.288]

На рис. 7.26 изображен одноступенчатый насос двустороннего входа. Двустороннее рабочее колесо 1 в силу симметрии разгружено от осевого усилия. Подвод насоса по-луспирального типа, отвод спиральный. Разъем корпуса насоса продольный (горизонтальный), причем нагнетательный и всасывающий трубопроводы подключены к нижней части корпуса 3. Это обеспечивает возможность вскрытия, осмотра, ремонта, замены отдельных деталей и всего ротора без демонтажа трубопроводов и отсоединения электродвигателя. Уплотняющий зазор рабочего колеса выполнен между сменными уплотняющими кольцами, закрепленными в корпусе насоса и на рабочем колесе. Уплотнение лабиринтное двухщелевое. Вал насоса защищен от износа сменными втулками, закрепленными на валу резьбовым соединением. Эти же втулки крепят рабочее колесо в осевом направлении. Сальники, уплотняющие подвод насоса, имеют кольца гидравлического затвора 2. Жидкость подводится к ним под давлением из отвода насоса по трубкам. Радиальная нагрузка ротора воспринимается подшипниками скольжения 4. Смазка подшипников кольцевая. В нижней части корпусов подшипников имеются камеры, через которые протака ет охлаждающая вода. Для фиксации вала в осевом направлении и восприятия осевого усилия, которое может возникнуть при неодинаковом изготовлении или износе правого и левоге уплотнений рабочего колеса, в левом подшипнике имеются радиально-упорные шарикоподшипники 5. Наружные кольца этих подшипников необходимо устанавливать с большими радиальными зазорами. В противном случае малые зазоры подшипников качения обеепечили бы кон-  [c.185]


Высокая коррозионная стойкость алюминия и его сплавов в условиях агрессивных сред, характерных для нефтедобывающей промышленности, делает перспективным их использование в качестве конструкционного материала для изготовления буровых, насоснокомпрессорных труб и деталей газопромыслового оборудования. Известно, что алюминий и его сплавы подвергаются коррозионному разрушению в результате общего растворения, питтинга, межкристаллит-ной коррозии, коррозии под напряжением, расслаивающейся коррозии. Вид коррозионного разрушения определяется составом алюминиевого сплава, зависит от состава коррозионной среды и условий эксплуатации. Так, при использовании бурильных труб из алюминиевых сплавов возможно развитие контактной коррозии за счет соединения их с остальными замками. В зазорах резьбовых соединений происходят процессы щелевой коррозии, а при нагружении таких соединений пере-меннылА нагрузками возникают процессы фреттинг-коррозии. Значительное влияние на характер коррозионного разрушения оказывает pH коррозионно-активной среды. Практика эксплуатации алюминиевых труб показывает, что с увеличением pH от 1 до 13 меняется характер коррозионного поражения равномерная коррозия — в сильнощелочной, щелевая - в сильно кислой областях, питтинговая - при pH = 3-11.  [c.120]

В случае применения ЛБТ из алюминиевых сплавов возможно развитие контактной коррозии за счет соединения их со стальными замками. В зазорах резьбовых соединений происходят процессы щелевой коррозии. При нагружении таких соединений переменными нагрузками возникают процессы фреттинг-корро-зии. При проведении спуско-подъемных работ наблюдается периодическое смачивание при чередовании атмосферной коррозии и коррозпи погружением в электролит, что стимулирует увеличение скорости коррозионного разрушения.  [c.107]

В винтовых механизмах можно применять более высокие гайки, нежели в резьбовых соединениях, так как вследствие износа и приработки распределение нагрузки между витками резьбы улучщается. Увеличение высоты гайки позволяет повысить работоспособность передачи. Требуемое число рабочих витков, определяющих высоту гайки  [c.390]

Работа деталей резьбового соединения. В большинстве случаев )езьбовое соединение предварительно затягивают. При этом на поверхности стыка соединяемых деталей возникает сила трения, препятствующая действию внешней сдвигающей нагрузки. В результате действия сил трения между витками резьбы и на опорных поверхностях винта или гайки стержень винта нагружается крутящим моментом, численно равным моменту трения на резьбе Л4р, который может быть определен по формуле (1,78).  [c.416]

Для водных сред, например для защиты подводных стальных конструкций и сооружений в прибрежном шельфе, а также для внутренней защиты резервуаров, тоже применяют в основном цилиндрические аноды, конструкция которых описана в разделе 8.5.1. Кроме таких материалов как графит, магнетит и ферросилид, дополнительно используют еще и аноды из сплавов свинца с серебром, а также платинированный титан, ниобий или тантал. Впрочем, такие аноды обычно выполняют не сплошными, а в форме труб. В конструкциях из сплавов свинца с серебром это делают ввиду большой массы анодов и сравнительно малой плотности анодного тока в случае платинированных вентильных металлов коррозионному износу и без того подвергается только платиновое покрытие. К тому же трубчатая форма позволяет получить большую площадь поверхности и тем самым больший анодный ток. На подсоединения анодоа из сплавов свинца с серебром распространяются рекомендации, приведенные в разделе 8.5.1. Однако можно припаивать кабель и непосредственно к материалу анодов при помощи мягкого припоя, если обеспечена особо эффективная разгрузка кабеля от растягивающих напряжений. В случае титана это невозможно. Такие аноды должны быть снабжены (в отдельных случаях тоже привариваемым) резьбовым соединением, изготовленным также из титана. В этом случае кабель свинчивается с кабельным наконечником, который тоже может быть изготовлен из титана. Все соединение окончательно заливается литой смолой. Иногда и всю трубу заполняют подходящей заливочной массой. Ввиду плохой электропроводности титана целесообразно в случае сравнительно длинных анодов с большой нагрузкой осуществлять подвод тока параллельно на обоих концах.  [c.210]

Рис. 2. Развитие трещины вглубь по числу циклов нагружения в образцах с концентратором (кривые 1—4) и резьбовых соединениях М20 X 2,5 (пунктирные кривые Г—4 ) из стали 25Х1МФ (нормализация) при различных значениях наибольшего напряжения пульсирующего цикла нагрузки Рис. 2. <a href="/info/48118">Развитие трещины</a> вглубь по числу циклов нагружения в образцах с концентратором (кривые 1—4) и <a href="/info/1218">резьбовых соединениях</a> М20 X 2,5 (пунктирные кривые Г—4 ) из стали 25Х1МФ (нормализация) при <a href="/info/673251">различных значениях</a> наибольшего <a href="/info/205810">напряжения пульсирующего цикла</a> нагрузки
Металлоплакирующие смазки целесообразно применять в парах трения скольжения, в которых работает сталь по стали при низкой температуре и высоких нагрузках (например, в шарнирноболтовых и резьбовых соединениях, механизмах управления самолетом).  [c.61]

Действительные значения напряжения от осевого растяжени. и от нагрузки на отдельный зуб значительно меняются вдоль длины резьбы на модели. В исследуемом резьбовом соединении все элементы находятся под действием осевой растягиваюпцей нагрузки. Распределение нагрузки между витками такого соеди-  [c.314]

Стержневая модель резьбового соединения впервые была использовала ироф. Н. Е. Жуковским (1902 г.) для расчета распределения нагрузки между витками. Позднее в статьях Е. Жакэ, Л. Мадушки и других авторов [8] также использовалась стержневая дискретная модель для решения аналогичной задачи. В работе И. А. Биргера расчет распределения нагрузки между витками сделан для стержневой модели с непрерывно идущими витками [8].  [c.47]

Характер распределения нагрузки между витками является одной из важных оценок совершенства динамически лагруженных резьбовых соединений. Практика показывает, что уменьшение нагрузки на первом витке приведет к столь же заметному повышению прочности соединений при переменной нагрузке.  [c.50]

На рис. 6.8 показано распределение контактных напряжений На стыке фланцев для этого же соединения при различной внешней нагрузке. С увеличением внешней нагрузки характер распределения напряжений в зоне контакта фланцев изменяется (кривые / и 4 на этом рисунке соответствуют затяжке соединения Ра = 0). Сплошные линии соответствуют фланцам с /i = /2 = 36 мм, штриховые — /i = 2 = 9 мм. Зависимость дополнительных усилий в болтах от внешней растягивающей силы дана на рис. 6.9. Из рис. 6.9 видно, что эта зависимость существенно нелинейна, что объясняется изгибом флагщев и рычажным характером их взаимодействия из-за смещения контакта к внешнему радиусу. С увеличением усилия предваритель ной затяжки дополнительная сила в болте iVo от в. шшней нагрузки снижается и затяжка таким образом является эффективным средством повышения прочности резьбовых соединений.  [c.110]



Смотреть страницы где упоминается термин Резьбовые соединения нагрузки : [c.34]    [c.293]    [c.40]    [c.79]    [c.48]   
Детали машин Издание 4 (1986) -- [ c.84 ]



ПОИСК



Резьбовые Нагрузки

Соединения резьбовые



© 2025 Mash-xxl.info Реклама на сайте