Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Умножение матрицы на число

В алгебре матриц определяются следующие действия над матрицами а) сложение матриц б) умножение матрицы на число в) умножение матриц. Указанные действия позволяют вычислить соответственно сумму матриц, произведение матрицы на число, произведение матриц и, как следствие, разность матриц.  [c.41]

Умножение матрицы на число. Если к—вещественное или комплексное число, то произведение ХА матрицы А на число к определяется формулой  [c.95]


Умножение матрицы на число I (которое можно записать справа, так и слева матрицы) эквивалентно умножению на I кв дого элемента этой матрицы если  [c.40]

При умножении матрицы на некоторое число необходимо умножить на это число все элементы матрицы, т. е.  [c.144]

Умножение (деление) матрицы на число. Для этого необходимо каждый элемент матрицы умножить (разделить) на это число.  [c.181]

Определение 4. Произведением матрицы Л размера тХп на число а называется матрица С тех же размеров, элементы которой получаются из соответствующих элементов матрицы Л умножением их на число а, т. е.  [c.41]

Л]- -[В] умножение тензора на число Тв=%ТА, гле матрица [В]—%[А умножение тензора на тензор (скаляр-ное) Тс=Гл7 в, где матрица [С]=[А][В].  [c.61]

Еще большее число показателей требует для своего расчета применение умножения матриц на векторы. Вектор — это матрица с одной строкой или одним столбцом. Данная операция, таким образом, есть частный случай умножения матриц. Ее результатом является вектор. Примером такой операции является вычисление потребностей в материалах.  [c.53]

В табл. 7.1 приведена скорость выполнения операции умножения матрицы на вектор. В первой колонке представлены выражения для числа тактовых циклов, необходимых для завершения одной операции умножения. Умножение матрицы тХп на вектор /гХ1 требует 2тп операций сложения и умножения. Если предположить, что биты данных проходят в системе с частотой 10 МГц (величина 0,1 мкс/бит является достаточно обоснованной для существующих электронных устройств), то можно вычислить скорость выполнения операций. Представлены два случая. Первый из них соответствует п = т = 32, при /=16 (I эквивалентно точности вычислений), а второй случай относится к п = т=128, / = 32. В табл. 7.2 представлены аналогичные данные для умножителей, выполняющих умножение матрицы на матрицу с точностью I цифр. В третьем столбце показаны результаты для /=16, п = т = к = 32, а четвертый столбец соответствует / = 32, п = т = к= 28. Во всех случаях результаты даны для операций с фиксированной запятой, выполняемых в одну секунду. Ни один цифровой процессор (оптический или элект-  [c.207]

В символьных вычислениях центральное место занимает операция вычисления внутреннего произведения, эквивалентная умножению составляющих элементов на вектор (векторное умножение), на матрицу (умножение матрицы на матрицу) или на корреляционную функцию. В предыдущих разделах была установлена общность процедур вычисления внутреннего произведения для большого числа алгоритмов из области цифровых вычислений. В одном типичном представлении символьных вычислений отношения знаний выражаются в терминах логического сопоставления с образцом, процедура которого определяется поиском соглашения по предпосылке-условию (с левой стороны) соотношения если [А], тогда [В] (см. разд. 10.3.5). Здесь [А] является подпространством Л -мерного векторного пространства  [c.354]


Умножение матрицы на скаляр р равносильно умножению всех ее элементов на это число Ьу = р ау 1 = 1,2,] =1,2,...,11.  [c.156]

Умножение матрицы [Aij] на скаляр X дает матрицу [КАц. Произведение двух матриц [Aij] и определено только в том случае, если число столб-  [c.18]

Суммой двух матриц А и В одинакового порядка (тХп) называется матрица того же порядка, каждый элемент которой равен сумме соответствующих элементов слагаемых матриц. Перемножать можно только матрицы, у которых число столбцов в первой матрице совпадает с числом строк во второй. Каждый элемент матрицы — произведения С=ВА — определяется по правилу умножения строки на столбец, которое для квадратных матриц приводит к формуле  [c.46]

Мы уже говорили, что, записывая уравнение (4.19) в виде г = кг, мы просто пользуемся символическим обозначением для указания определенной операции А, совершаемой над координатной системой (или над вектором). Но, расширяя наше понятие о матрицах, можно сделать так, что эта запись будет указывать на действительное умножение на умножение матриц. Матрицы, рассматривавшиеся нами до сих пор, были квадратными, т. е. число их строк равнялось числу столбцов. Однако можно рассматривать также матрицы, состоящие всего лишь из одного столбца, такие, как  [c.119]

Любую матрицу при помощи элементарных преобразований строк и столбцов, заключающихся в перестановке строк (столбцов), умножении строки (столбца) на число и сложении строк (столбцов) между собой, можно привести к каноническому виду. Ранг канонической матрицы равен числу единиц на ее главной диагонали.  [c.16]

Ранг матрицы не изменяется от элементарных преобразований. Под элементарными преобразованиями понимаются замена строк столбцами, а столбцов соответствующими строками перестановка строк матрицы вычеркивание строки, все элементы которой равны нулю умножение какой-либо строки на число, отличное от нуля прибавление к элементам одной строки соответствующих элементов другой строки.  [c.53]

Г. Умножение матриц. Рассмотрим (т X Р) Матрицу а и (/ X ) Матрицу Ъ—число столбцов а равно числу строк Ъ. Такие матрицы, взятые в указанной последовательности а, Ь, называются конформными. Действие умножения определено для конформных матриц. Произведением их с — аЬ называется (т X )"Матрица, элемент /-Й строки и /г-го столбца которой ра ен сумме произведений элементов /-й строки матрицы а на элементы /г-го столбца матрицы Ь  [c.762]

Матрицы, имеющие одинаковое число строк и столбцов, можно складывать (или вычитать) поэлементно. Умножение матрицы [Л,/] на скаляр X дает матрицу [М,у]. Произведение двух матриц определено только в том случае, когда число столбцов в первом множителе Л равно числу строк во втором множителе Произведением (М X Р)-матрицы на (Р X Л )-матрицу будет (М х Ы)-матрица. Умножение матриц обычно обозначается простым написанием их символов один за другим, например  [c.32]

Гамильтониан (2.8), (2.9) зависит от 21 параметра. Существует три типа простейших преобразований, которые изменяют (в частности, исключают) параметры в гамильтониане без изменения уравнений движения. К первому типу относятся групповые преобразования 30(3) х 30(3). С их помощью в представлении (2.9) матрицы А и С могут быть одновременно приведены к диагональному виду. Добавление к гамильтониану произвольной линейной комбинации функций Казимира Рг,Р2, которые являются однородными квадратичными функциями, позволяет исключить еще два параметра. Умножение гамильтониана на произвольную константу Н аН с заменой времени t 1, также позволяет уменьшить число параметров на единицу. Таким образом, квадратичное семейство гамильтонианов (2.8) либо (2.9)) определяется двенадцатью параметрами.  [c.181]

Второй способ состоит в умножении соответствующего диагонального элемента матрицы на некоторое большое число, скажем 10 , перед модификацией соответствующего коэффициента нагрузки. В рассматриваемом случае мы бы получили  [c.486]

Матрица рассеяния 5(Л) не зависит от Л и также сводится к умножению на число (б).  [c.109]

Таком образом, для выполнения алгоритма (55) требуются два прямых и одно обратное преобразование Ф/рье, а также прямое умножение матрицы на матрицу. Если в качестве дижретного преобразования Фурье использовать алгоритм БПФ, число опера дай сложения составит 2N og2 , а число операций умножения -.  [c.63]


Однако этот критерий, строго говоря, не имеет смысла. Путем почленного умножения уравнений на числа, большие единицы, определитель системы линейных алгебраических уравнений можно сделать сколь угодно большим. Обусловленность системы при этом не изменится. В теории матриц вводятся числа обусловленности, инвариантные относительно подобных преобразований. К таким числам относятся числа Тюринга и Тодда.  [c.181]

SUBROUTINE SKM (А, S, М, N) — программа умножения матрицы на скаляр. А — исходная и результирующая матрица S — скалярная величина М, N — целые числа, определяющие размер матрицы.  [c.251]

Рассмотрение данного примера было вызвано необходимостью обеспечить высокую скорость при выполнении операции внутреннего произведения в линейной алгебре (например, для умножения матрицы на вектор или матрицы на матрицу), в противном случае эти операции становятся бессысленными. Операции внутреннего произведения включают умножение двух чисел и сложение результата с третьим числом. Например, 2-разрядный умножитель-сумматор умножает два 2-раз-рядных числа М ц Ы, прибавляет результат к 5-разрядному входному числу X и выводит результаты в виде 5-разрядного числа У. В синхронизированном режиме работы выходной сигнал У мог бы подаваться по цепи обратной связи на вход X для того, чтобы достичь эффекта многократного накопления результата (если имеется возможность накопления до трех произведений и при этом не возникает переполнение).  [c.155]

Одна из целей цифровых оптических вычислений состоит в достижении большей гибкости системы, чем у их аналоговых предшественников. Особенность оптических компьютеров состоит в том, что они скорее выполняют не монолитные операции, а ряд простых операций, которые можно объединить для выполнения широкого круга задач. Однако в данном случае это не так плохо, поскольку при построении оптических процессоров, осуществляющих функции регистра, их возможности поднимутся на качественно новый уровень. С этой точки зрения матричное умножение (под которым подразумевают либо умножение матрицы на вектор, либо матрицы на матрицу), возможно, является наиболее полезной операцией среднего уровня из числа тех, которые только можно придумать. Многие сложные проблемы, например калмановское фильтрование,  [c.183]

Разновидности основной архитектуры. Сообщалось и о других способах преобразования схем вычисления свертки в схемы умножителей матрицы на матрицу. В [16] для получения промежуточного произведения при вычислении внутреннего произведения двух векторов используется основная схема вычисления свертки с интегрированием по времени. Все промежуточные произведения вычисляются параллельно на независимых друг от друга умножителях и суммируются с помощью цилиндрической линзы. Таким образом, для перемножения двух векторов, состоящих из п элементов, с точностью в I знаков требуется п входов для каждого вектора, 21—1 фотодетекторных элементов и 21—1 тактовых циклов. При выполнении суммирования с помощью линз максимальное значение на детектирующем элементе составляет п1 Ь—1) . Матрично-векторный умножитель схематично показан на рис. 7.12. Следует заметить, что буферные нули в данном случае не требуются, поскольку элементы вводятся параллельно. Для построения матрично-векторного умножителя для перемножения матрицы тХп и вектора пХ все т умножителей векторов размещаются параллельно. Теперь каждый элемент матрицы а имеет вход (при общем числе входов тп), а элементы вектора Ь сдвигаются относительно этих входов. Умножение выполняется за интервал времени, составляющий т 21—1) циклов при этом i используется т(21—1) детекторов выходного сигнала. Возможности процессора удается расширить до операции умножения матрицы на матрицу с помощью временного разделения каналов для ввода элементов Ь при условии построчной загрузки матрицы по соответствующим буферам. В схеме имеется также тп входов для одной матрицы и п входов для другой, а также т 21—1) детекторов выходного сигнала. Затраты времени на вычисления составляют k + m—1) 21—1) тактовых циклов.  [c.200]

Правильный результат получают уже в смешанном формате, путем умножения исходной матрицы на дополненный вектор. Эта процедура может быть выполнена с помощью любого из обсуждавшихся выше вариантов умножения матрицы на матрицу. Ценой этого будет служить увеличение объема памяти, необходимое для записи вектора, и задача класса умножение матрицы на вектор оказывается отданной в уплату за задачу класса матрица — матрица. В целом же кажется более выгодным использовать оптические методы для выполнения суммирования вдоль противодиагоналей. В число возможных оптических способов решения такой задачи входит сегментация цилиндрических линз, сегментация голографических линз или применение матриц оптических волокон, соединяющих соответствующие элементы с детекторами, на которых происходит суммирование.  [c.203]

В работе [20] предлол<ены две возможные схемы построения процессоров внешнего произведения. В первом случае используется перекрестное включение одномерных входных модуляторов (рис. 7.14). Для умножения матрицы на вектор в один из модуляторов вводят целый столбец матрицы, а элементы вектора размещаются в другом модуляторе. Матричный модулятор должен обладать т1 разрядами, а модулятор для ввода вектора должен иметь I разрядов. Когда оба модулятора загружены, то от источника света подается импульс света и перекрестное произведение записывается на матрице пг1х1 интегрирующих по времени детекторов. Если суммирование осуществляется оптически, необходимо только т(21—1) детекторов. Каждое промежуточное произведение может быть накоплено на детекторе за время загрузки входного сигнала в модулятор, которое полагаем равным т1. Полное число тактовых импульсов для операции умножения матрицы на вектор составляет пт1. Для умножения матрицы на матрицу требуется кт 21—1) детекторов, при этом необходимое число тактовых циклов составляет лишь пт1 (если т>к).  [c.203]

Все процессоры характеризуются тем, что чем больше объем задачи, тем быстрее они работают. Например, умножители матрицы на вектор (за одним исключением) работают со скоростью в десятки мегаопераций в секунду, характерной для небольших по объему задач. Процессоры умножения матрицы на матрицу работают со скоростями порядка гигаопераций в секунду, что характерно для задач большего масштаба. Очевиден выигрыш в быстродействии, получаемый для параллельной обработки. Более неопределенной характеристикой является абсолютная величина быстродействия. Представленные здесь цифры являются лишь оценками, но они действительно отражают общие свойства оптических вычислений. За небольшим числом исключений имеется очень небольшая разница (менее чем на порядок по величине) между разными видами оптических процессоров, используемых для решения заданной задачи. Возможности оптических процессоров, как представляется, достаточно жестко ограничены определенными скоростями. При сравнении с возможностями электронных процессоров скорости вряд ли произведут на читателя глубокое впечатление. На момент написания книги на промышленно освоенных электронных устройств удается достичь скоростей около 50 мегаопераций в секунду. Разрабатываемые в настоящее время умножители матрицы на вектор не позволят превзойти эту величину. Умножители матрицы на матрицу демонстрируют существенно более высокие возможности.  [c.208]


Матрица S обладает рядом универсальных свойств, вытекаюших из симметрии задачи и закона сохранения энергии. Отметим одно из них. Известно, что при умножении столбца или строки матрицы на число q ее детерминант увеличивается в q раз. Умножая первый и третий столбец мат-  [c.96]

Поэтому математической моделью излучающей системы может служить соотношение (2.24) или (2.27), т. е. систему излучателей можно описывать матрицей как [/)], так и [/)] . Размерности матриц [ )] и [/)] одинаковы, и для хранения их в ЭВМ требуются одинаковые объемы памяти. В модели (2.24) нахождение коэффициентов мод токов [/] связано с решением системы линейных алгебраических уравнений, а в модели (2.27) эти коэффициенты находятся путем умножения матрицы на вектор, что требует существенно меньшего числа операций. Матрицы [В] и имеют порядок MNxMN), т. е. с ростом числа излучателей и числа учитываемых мод он быстро увеличивается.  [c.62]

В АР с большим числом излучателей матрица [ )] содержит много элементов с малой абсолютной величиной, которые соответствуют излучателям, далеко отстоящим друг от друга. Поскольку в итерационных методах умножение матрицы на вектор является единственной операцией с матрицей, то это позволяет легко исключить операции с элементами матрицы [О], имеющими малое значение. Сохраняя в матрице [1>] только те элементы, которые соответствуют учету взаимодействия не более чем с Ь ближайшими излучателями, можно существенно уменьшить затраты машинного времени (8, 9 в табл. 3.1). Например, расчет токов АР из 21X21 полуволновых вибраторов над экраном ( =с у=0,6Я,) методом сопряженных градиентов с учетом взаимодействия  [c.110]

Умножение двух матриц возможно, если число столбцов первой равно числу строк второй матрицы. Произведением матрицы А = = [aij] размера тХР на матрицу В = [Ьр,] размера рХп является матрица С = [с,/,] размера тХп, в которой каждый элемент iu определяется по правилу умножения строки на столбец элементы /-Н строки первой матрицы умножаются на соответствуюн не элементы kio столбца второй матрицы и полученные произведения складываются  [c.104]

В случае, когда элементами матрицы являются матрицы-блоки, умножение выполняется по тем же правилам, как если бы элементами матриц были числа, т. е. строки первой матрицы-сомно-жителя умножаются на столбцы второй матрицы-сомножителя (см., например, Г а н т м а х е р Ф. Р., Теория матриц, 5),  [c.184]

Умножение на скаляр а тензора Т ь любого ранга вследствие инва-риашносга первого можно выполнять в любом множестве координат. Для этого необходамо каждую компоненту матрицы тензора в выбранной множестве координат умножить на число, характеризующее скал ф. Ранг тензора, получаемого в результате такого умножения, равен рангу тензора, участвующему в этом действии  [c.242]

Произведением матрицы [A]—[aik]m,n на число а называется матрица a,[A]=[aaik]m.n, полученная умножением всех элементов матрицы [Л] на число сг. пример  [c.37]

Быстродействие оптических матричных умножителей было уже описано в табл. 7.1 и 7.2. При вычислении отношения Псалтиса числа в табл. 7.1 и 7.2 имеют коэффициент запаса 2, поскольку были учтены операции умножения и сложения. Для умножителей матриц на векторы соотношение Псалтиса показано в табл. 7.3. Умножители матрицы на матрицы показаны в табл. 7.4. Вычисления проведены для тех же случаев, что и в табл. 7.1 и 7.2. Второй столбец табл. 7.3 предполагает значение / = 16, п=т = 32, в то время как для третьего столбца /=32, п = т= 28. В табл. 7.4 второй столбец соответствует значениям /=16, n = m = = 32, а третий столбец относится к / = 32, п=т = k=l28.  [c.210]

Полученный результат справедлив при любом выборе ортонор-мированной системы функций Если система // выбрана произвольно, то для построения матрицы гамильтониана потребуется большое число функций //, и соответствующее представление группы симметрии будет иметь очень высокую размерность. Если, с другой стороны, взять в качестве функций /г собственные состояния гамильтониана, то действие на них гамильтониана сведется к умножению их на некоторое число (собственное значение энергии), и матрица гамильтониана окажется диагональной. Любое преобразование симметрии должно поэтому переводить либо в себя, либо в вырожденное состояние. Размерность представления, порожденного данной функцией / , не может превышать степень вырождения состояния. Таким образом, между размерностью представления группы и степенью вырождения состояния, породившего это представление, существует тесная связь. В частности, если под действием неприводимого представления все состояния некоторой совокупности преобразуются друг через друга, то это означает, что и под действием операции симметрии эти состояния будут преобразовываться друг через друга, т. е. мы не можем найти никакой линейной комбинации (никакого унитарного преобразования), представляющей исключение. Из симметрии гамильтониана поэтому следует, что эти состояния должны быть вырожденными. Мы пришли тем самым, правда с помощью интуитивных соображений, к одному из важных результатов теории групп. Если группа симметрии гамильтониана имеет многомерные неприводимые представления, это означает, что собственные состояния гамильтониана должны быть вырожденными.  [c.38]


Смотреть страницы где упоминается термин Умножение матрицы на число : [c.37]    [c.761]    [c.179]    [c.136]    [c.39]    [c.125]    [c.541]    [c.634]    [c.46]    [c.213]   
Аналитическая механика (1961) -- [ c.761 ]



ПОИСК



Матрица умножение матриц

Умножение

Умножение матриц



© 2025 Mash-xxl.info Реклама на сайте